BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 28770367)

  • 1. Carbon catabolite regulation in Streptomyces: new insights and lessons learned.
    Romero-Rodríguez A; Rocha D; Ruiz-Villafán B; Guzmán-Trampe S; Maldonado-Carmona N; Vázquez-Hernández M; Zelarayán A; Rodríguez-Sanoja R; Sánchez S
    World J Microbiol Biotechnol; 2017 Sep; 33(9):162. PubMed ID: 28770367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomic analysis of a classical model of carbon catabolite regulation in Streptomyces coelicolor.
    Romero-Rodríguez A; Rocha D; Ruiz-Villafan B; Tierrafría V; Rodríguez-Sanoja R; Segura-González D; Sánchez S
    BMC Microbiol; 2016 Apr; 16():77. PubMed ID: 27121083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ROK-family regulator Rok7B7 directly controls carbon catabolite repression, antibiotic biosynthesis, and morphological development in Streptomyces avermitilis.
    Lu X; Liu X; Chen Z; Li J; van Wezel GP; Chen W; Wen Y
    Environ Microbiol; 2020 Dec; 22(12):5090-5108. PubMed ID: 32452104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crotonylation of key metabolic enzymes regulates carbon catabolite repression in Streptomyces roseosporus.
    Sun CF; Xu WF; Zhao QW; Luo S; Chen XA; Li YQ; Mao XM
    Commun Biol; 2020 Apr; 3(1):192. PubMed ID: 32332843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanisms of carbon catabolite repression in bacteria.
    Deutscher J
    Curr Opin Microbiol; 2008 Apr; 11(2):87-93. PubMed ID: 18359269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pleiotropic effect of the SCO2127 gene on the glucose uptake, glucose kinase activity and carbon catabolite repression in Streptomyces peucetius var. caesius.
    Guzmán S; Carmona A; Escalante L; Imriskova I; López R; Rodríguez-Sanoja R; Ruiz B; Servín-González L; Sánchez S; Langley E
    Microbiology (Reading); 2005 May; 151(Pt 5):1717-1723. PubMed ID: 15870479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanism of sugar-mediated catabolite repression of the propionate catabolic genes in Escherichia coli.
    Park JM; Vinuselvi P; Lee SK
    Gene; 2012 Aug; 504(1):116-21. PubMed ID: 22579471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay between carbon, nitrogen and phosphate utilization in the control of secondary metabolite production in Streptomyces.
    Romero-Rodríguez A; Maldonado-Carmona N; Ruiz-Villafán B; Koirala N; Rocha D; Sánchez S
    Antonie Van Leeuwenhoek; 2018 May; 111(5):761-781. PubMed ID: 29605896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon Catabolite Regulation of Secondary Metabolite Formation and Morphological Differentiation in Streptomyces coelicolor.
    Romero-Rodríguez A; Ruiz-Villafán B; Tierrafría VH; Rodríguez-Sanoja R; Sánchez S
    Appl Biochem Biotechnol; 2016 Nov; 180(6):1152-1166. PubMed ID: 27372741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of glucose kinase-dependent and -independent pathways for carbon control of primary metabolism, development and antibiotic production in Streptomyces coelicolor by quantitative proteomics.
    Gubbens J; Janus MM; Florea BI; Overkleeft HS; van Wezel GP
    Mol Microbiol; 2012 Dec; 86(6):1490-507. PubMed ID: 23078239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon catabolite repression in Pseudomonas : optimizing metabolic versatility and interactions with the environment.
    Rojo F
    FEMS Microbiol Rev; 2010 Sep; 34(5):658-84. PubMed ID: 20412307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon catabolite repression in bacteria.
    Stülke J; Hillen W
    Curr Opin Microbiol; 1999 Apr; 2(2):195-201. PubMed ID: 10322165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CcpA-mediated repression of Clostridium difficile toxin gene expression.
    Antunes A; Martin-Verstraete I; Dupuy B
    Mol Microbiol; 2011 Feb; 79(4):882-99. PubMed ID: 21299645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rewiring the functional complexity between Crc, Hfq and sRNAs to regulate carbon catabolite repression in Pseudomonas.
    Bharwad K; Rajkumar S
    World J Microbiol Biotechnol; 2019 Aug; 35(9):140. PubMed ID: 31451938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Carbon catabolite repression or how bacteria choose their favorite sugars].
    Galinier A
    Med Sci (Paris); 2018; 34(6-7):531-539. PubMed ID: 30067204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding carbon catabolite repression in Escherichia coli using quantitative models.
    Kremling A; Geiselmann J; Ropers D; de Jong H
    Trends Microbiol; 2015 Feb; 23(2):99-109. PubMed ID: 25475882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sugar uptake and sensitivity to carbon catabolite regulation in Streptomyces peucetius var. caesius.
    Guzmán S; Ramos I; Moreno E; Ruiz B; Rodríguez-Sanoja R; Escalante L; Langley E; Sanchez S
    Appl Microbiol Biotechnol; 2005 Nov; 69(2):200-6. PubMed ID: 15812641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose kinase alone cannot be responsible for carbon source regulation in Streptomyces peucetius var. caesius.
    Ramos I; Guzmán S; Escalante L; Imriskova I; Rodríguez-Sanoja R; Sanchez S; Langley E
    Res Microbiol; 2004 May; 155(4):267-74. PubMed ID: 15142624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients.
    Görke B; Stülke J
    Nat Rev Microbiol; 2008 Aug; 6(8):613-24. PubMed ID: 18628769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization.
    Brückner R; Titgemeyer F
    FEMS Microbiol Lett; 2002 Apr; 209(2):141-8. PubMed ID: 12007797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.