These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
542 related articles for article (PubMed ID: 28770402)
1. Kinematic efficacy of supplemental anterior lumbar interbody fusion at lumbosacral levels in thoracolumbosacral deformity correction with and without pedicle subtraction osteotomy at L3: an in vitro cadaveric study. Dahl BT; Harris JA; Gudipally M; Moldavsky M; Khalil S; Bucklen BS Eur Spine J; 2017 Nov; 26(11):2773-2781. PubMed ID: 28770402 [TBL] [Abstract][Full Text] [Related]
2. Use of Supplemental Short Pre-Contoured Accessory Rods and Cobalt Chrome Alloy Posterior Rods Reduces Primary Rod Strain and Range of Motion Across the Pedicle Subtraction Osteotomy Level: An In Vitro Biomechanical Study. Hallager DW; Gehrchen M; Dahl B; Harris JA; Gudipally M; Jenkins S; Wu AM; Bucklen BS Spine (Phila Pa 1976); 2016 Apr; 41(7):E388-95. PubMed ID: 27018904 [TBL] [Abstract][Full Text] [Related]
3. Biomechanical evaluation of lateral lumbar interbody fusion with secondary augmentation. Reis MT; Reyes PM; Bse ; Altun I; Newcomb AG; Singh V; Chang SW; Kelly BP; Crawford NR J Neurosurg Spine; 2016 Dec; 25(6):720-726. PubMed ID: 27391398 [TBL] [Abstract][Full Text] [Related]
4. Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine. Harris BM; Hilibrand AS; Savas PE; Pellegrino A; Vaccaro AR; Siegler S; Albert TJ Spine (Phila Pa 1976); 2004 Feb; 29(4):E65-70. PubMed ID: 15094547 [TBL] [Abstract][Full Text] [Related]
5. Biomechanical in vitro comparison between anterior column realignment and pedicle subtraction osteotomy for severe sagittal imbalance correction. La Barbera L; Wilke HJ; Liebsch C; Villa T; Luca A; Galbusera F; Brayda-Bruno M Eur Spine J; 2020 Jan; 29(1):36-44. PubMed ID: 31414289 [TBL] [Abstract][Full Text] [Related]
6. Biomechanics of lateral plate and pedicle screw constructs in lumbar spines instrumented at two levels with laterally placed interbody cages. Nayak AN; Gutierrez S; Billys JB; Santoni BG; Castellvi AE Spine J; 2013 Oct; 13(10):1331-8. PubMed ID: 23685215 [TBL] [Abstract][Full Text] [Related]
7. Additional sagittal correction can be obtained when using an expandable titanium interbody device in lumbar Smith-Peterson osteotomies: a biomechanical study. Qandah NA; Klocke NF; Synkowski JJ; Chinthakunta SR; Hussain MM; Salloum KG; Marvin EA; Bucklen BS Spine J; 2015 Mar; 15(3):506-13. PubMed ID: 25315134 [TBL] [Abstract][Full Text] [Related]
8. Iliac screws may not be necessary in long-segment constructs with L5-S1 anterior lumbar interbody fusion: cadaveric study of stability and instrumentation strain. Hlubek RJ; Godzik J; Newcomb AGUS; Lehrman JN; de Andrada B; Bohl MA; Farber SH; Kelly BP; Turner JD Spine J; 2019 May; 19(5):942-950. PubMed ID: 30419290 [TBL] [Abstract][Full Text] [Related]
9. Biomechanical properties of posterior transpedicular-transdiscal oblique lumbar screw fixation with novel trapezoidal lateral interbody spacer: an in vitro human cadaveric model. Wu AM; Harris JA; Hao JC; Jenkins SM; Chi YL; Bucklen BS Eur Spine J; 2017 Nov; 26(11):2873-2882. PubMed ID: 28386725 [TBL] [Abstract][Full Text] [Related]
10. Biomechanical analysis of a novel posterior construct in a transforaminal lumbar interbody fusion model an in vitro study. Sethi A; Muzumdar AM; Ingalhalikar A; Vaidya R Spine J; 2011 Sep; 11(9):863-9. PubMed ID: 21802998 [TBL] [Abstract][Full Text] [Related]
11. Spinal instrumentation after complete resection of the last lumbar vertebra: an in vitro biomechanical study after L5 spondylectomy. Bartanusz V; Muzumdar A; Hussain M; Moldavsky M; Bucklen B; Khalil S Spine (Phila Pa 1976); 2011 Jun; 36(13):1017-21. PubMed ID: 21224772 [TBL] [Abstract][Full Text] [Related]
12. Biomechanical effect of transforaminal lumbar interbody fusion and axial interbody threaded rod on range of motion and S1 screw loading in a destabilized L5-S1 spondylolisthesis model. Fleischer GD; Hart D; Ferrara LA; Freeman AL; Avidano EE Spine (Phila Pa 1976); 2014 Jan; 39(2):E82-8. PubMed ID: 24150429 [TBL] [Abstract][Full Text] [Related]
13. Biomechanical analysis of an expandable lateral cage and a static transforaminal lumbar interbody fusion cage with posterior instrumentation in an in vitro spondylolisthesis model. Mantell M; Cyriac M; Haines CM; Gudipally M; O'Brien JR J Neurosurg Spine; 2016 Jan; 24(1):32-8. PubMed ID: 26384133 [TBL] [Abstract][Full Text] [Related]
14. Biomechanical comparison of iliac screws versus interbody femoral ring allograft on lumbosacral kinematics and sacral screw strain. Cunningham BW; Sefter JC; Hu N; Kim SW; Bridwell KH; McAfee PC Spine (Phila Pa 1976); 2010 Mar; 35(6):E198-205. PubMed ID: 20195199 [TBL] [Abstract][Full Text] [Related]
15. Correction of severe spinopelvic mismatch: decreased blood loss with lateral hyperlordotic interbody grafts as compared with pedicle subtraction osteotomy. Leveque JC; Yanamadala V; Buchlak QD; Sethi RK Neurosurg Focus; 2017 Aug; 43(2):E15. PubMed ID: 28760028 [TBL] [Abstract][Full Text] [Related]
16. Pedicle Subtraction Osteotomy Construct Optimization: A Cadaveric Study of Various Multirod and Interbody Configurations. Pereira BA; Godzik J; Lehrman JN; Sawa AGU; Hlubek RJ; Uribe JS; Kelly BP; Turner JD Spine (Phila Pa 1976); 2022 Apr; 47(8):640-647. PubMed ID: 35102122 [TBL] [Abstract][Full Text] [Related]
17. Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: a finite element study. Ambati DV; Wright EK; Lehman RA; Kang DG; Wagner SC; Dmitriev AE Spine J; 2015 Aug; 15(8):1812-22. PubMed ID: 24983669 [TBL] [Abstract][Full Text] [Related]
18. Biomechanics of posterior instrumentation in L1-L3 lateral interbody fusion: Pedicle screw rod construct vs. transfacet pedicle screws. Chin KR; Newcomb AG; Reis MT; Reyes PM; Hickam GA; Gabriel J; Pencle FJ; Sung RD; Crawford NR Clin Biomech (Bristol); 2016 Jan; 31():59-64. PubMed ID: 26499776 [TBL] [Abstract][Full Text] [Related]
19. Biomechanical stability of transverse connectors in the setting of a thoracic pedicle subtraction osteotomy. Lehman RA; Kang DG; Wagner SC; Paik H; Cardoso MJ; Bernstock JD; Dmitriev AE Spine J; 2015 Jul; 15(7):1629-35. PubMed ID: 25771755 [TBL] [Abstract][Full Text] [Related]
20. Biomechanical advantages of supplemental accessory and satellite rods with and without interbody cages implantation for the stabilization of pedicle subtraction osteotomy. La Barbera L; Brayda-Bruno M; Liebsch C; Villa T; Luca A; Galbusera F; Wilke HJ Eur Spine J; 2018 Sep; 27(9):2357-2366. PubMed ID: 29740675 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]