These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 28770433)

  • 1. A new myofilament contraction model with ATP consumption for ventricular cell model.
    Muangkram Y; Noma A; Amano A
    J Physiol Sci; 2018 Sep; 68(5):541-554. PubMed ID: 28770433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myofibrillar ATPase activity and mechanical performance of skinned fibres from rabbit psoas muscle.
    Potma EJ; Stienen GJ; Barends JP; Elzinga G
    J Physiol; 1994 Jan; 474(2):303-17. PubMed ID: 8006817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of adenosine triphosphate hydrolysis by shortening myofibrils from rabbit psoas muscle.
    Ohno T; Kodama T
    J Physiol; 1991 Sep; 441():685-702. PubMed ID: 1816389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ATP hydrolysis and phosphate release steps control the time course of force development in rabbit skeletal muscle.
    Sleep J; Irving M; Burton K
    J Physiol; 2005 Mar; 563(Pt 3):671-87. PubMed ID: 15611023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of muscle contraction and actomyosin NTP hydrolysis from rabbit using a series of metal-nucleotide substrates.
    Burton K; White H; Sleep J
    J Physiol; 2005 Mar; 563(Pt 3):689-711. PubMed ID: 15611022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the tension responses to ramp shortening and lengthening in intact mammalian muscle fibres: crossbridge and non-crossbridge contributions.
    Roots H; Offer GW; Ranatunga KW
    J Muscle Res Cell Motil; 2007; 28(2-3):123-39. PubMed ID: 17610136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sliding distance of actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle.
    Yanagida T; Arata T; Oosawa F
    Nature; 1985 Jul 25-31; 316(6026):366-9. PubMed ID: 4022127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the cardiac force-time integral with energetics using a cardiac muscle model.
    Taylor TW; Goto Y; Hata K; Takasago T; Saeki A; Nishioka T; Suga H
    J Biomech; 1993 Oct; 26(10):1217-25. PubMed ID: 8253826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The endothermic ATP hydrolysis and crossbridge attachment steps drive the increase of force with temperature in isometric and shortening muscle.
    Offer G; Ranatunga KW
    J Physiol; 2015 Apr; 593(8):1997-2016. PubMed ID: 25564737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The efficiency of contraction in rabbit skeletal muscle fibres, determined from the rate of release of inorganic phosphate.
    He ZH; Chillingworth RK; Brune M; Corrie JE; Webb MR; Ferenczi MA
    J Physiol; 1999 Jun; 517 ( Pt 3)(Pt 3):839-54. PubMed ID: 10358123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid regeneration of the actin-myosin power stroke in contracting muscle.
    Lombardi V; Piazzesi G; Linari M
    Nature; 1992 Feb; 355(6361):638-41. PubMed ID: 1538750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATPase and shortening rates in frog fast skeletal myofibrils by time-resolved measurements of protein-bound and free Pi.
    Barman T; Brune M; Lionne C; Piroddi N; Poggesi C; Stehle R; Tesi C; Travers F; Webb MR
    Biophys J; 1998 Jun; 74(6):3120-30. PubMed ID: 9635765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model of crossbridge action: the effects of ATP, ADP and Pi.
    Pate E; Cooke R
    J Muscle Res Cell Motil; 1989 Jun; 10(3):181-96. PubMed ID: 2527246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sarcomere function and crossbridge cycling.
    ter Keurs HE
    Adv Exp Med Biol; 1995; 382():125-35. PubMed ID: 8540390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force and number of myosin motors during muscle shortening and the coupling with the release of the ATP hydrolysis products.
    Caremani M; Melli L; Dolfi M; Lombardi V; Linari M
    J Physiol; 2015 Aug; 593(15):3313-32. PubMed ID: 26041599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increase in ATP consumption during shortening in skinned fibres from rabbit psoas muscle: effects of inorganic phosphate.
    Potma EJ; Stienen GJ
    J Physiol; 1996 Oct; 496 ( Pt 1)(Pt 1):1-12. PubMed ID: 8910191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanochemical coupling in muscle: attempts to measure simultaneously shortening and ATPase rates in myofibrils.
    Lionne C; Travers F; Barman T
    Biophys J; 1996 Feb; 70(2):887-95. PubMed ID: 8789106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why choose myofibrils to study muscle myosin ATPase?
    Lionne C; Iorga B; Candau R; Travers F
    J Muscle Res Cell Motil; 2003; 24(2-3):139-48. PubMed ID: 14609025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into the kinetics of Ca2+-regulated contraction and relaxation from myofibril studies.
    Stehle R; Solzin J; Iorga B; Poggesi C
    Pflugers Arch; 2009 Jun; 458(2):337-57. PubMed ID: 19165498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence from insect fibrillar muscle about the elementary contractile process.
    Pringle JW
    J Gen Physiol; 1967 Jul; 50(6):Suppl:139-56. PubMed ID: 4228625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.