These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

580 related articles for article (PubMed ID: 28770852)

  • 1. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.
    Hensgens T; Fujita T; Janssen L; Li X; Van Diepen CJ; Reichl C; Wegscheider W; Das Sarma S; Vandersypen LMK
    Nature; 2017 Aug; 548(7665):70-73. PubMed ID: 28770852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental realization of an extended Fermi-Hubbard model using a 2D lattice of dopant-based quantum dots.
    Wang X; Khatami E; Fei F; Wyrick J; Namboodiri P; Kashid R; Rigosi AF; Bryant G; Silver R
    Nat Commun; 2022 Nov; 13(1):6824. PubMed ID: 36369280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coulomb blockade in an atomically thin quantum dot coupled to a tunable Fermi reservoir.
    Brotons-Gisbert M; Branny A; Kumar S; Picard R; Proux R; Gray M; Burch KS; Watanabe K; Taniguchi T; Gerardot BD
    Nat Nanotechnol; 2019 May; 14(5):442-446. PubMed ID: 30858522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cold-atom Fermi-Hubbard antiferromagnet.
    Mazurenko A; Chiu CS; Ji G; Parsons MF; Kanász-Nagy M; Schmidt R; Grusdt F; Demler E; Greif D; Greiner M
    Nature; 2017 May; 545(7655):462-466. PubMed ID: 28541324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Switching between Mott-Hubbard and Hund Physics in Moiré Quantum Simulators.
    Ryee S; Wehling TO
    Nano Lett; 2023 Jan; 23(2):573-579. PubMed ID: 36622289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Mott insulator of fermionic atoms in an optical lattice.
    Jördens R; Strohmaier N; Günter K; Moritz H; Esslinger T
    Nature; 2008 Sep; 455(7210):204-7. PubMed ID: 18784720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering topological states in atom-based semiconductor quantum dots.
    Kiczynski M; Gorman SK; Geng H; Donnelly MB; Chung Y; He Y; Keizer JG; Simmons MY
    Nature; 2022 Jun; 606(7915):694-699. PubMed ID: 35732762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum State Engineering of a Hubbard System with Ultracold Fermions.
    Chiu CS; Ji G; Mazurenko A; Greif D; Greiner M
    Phys Rev Lett; 2018 Jun; 120(24):243201. PubMed ID: 29956952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of Hubbard model physics in WSe
    Tang Y; Li L; Li T; Xu Y; Liu S; Barmak K; Watanabe K; Taniguchi T; MacDonald AH; Shan J; Mak KF
    Nature; 2020 Mar; 579(7799):353-358. PubMed ID: 32188950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competing magnetic orders in a bilayer Hubbard model with ultracold atoms.
    Gall M; Wurz N; Samland J; Chan CF; Köhl M
    Nature; 2021 Jan; 589(7840):40-43. PubMed ID: 33408376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phonon-Induced Pairing in Quantum Dot Quantum Simulator.
    Bhattacharya U; Grass T; Bachtold A; Lewenstein M; Pistolesi F
    Nano Lett; 2021 Nov; 21(22):9661-9667. PubMed ID: 34757742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast optical control of individual quantum dot spin qubits.
    De Greve K; Press D; McMahon PL; Yamamoto Y
    Rep Prog Phys; 2013 Sep; 76(9):092501. PubMed ID: 24006335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extended Bose-Hubbard model with dipolar excitons.
    Lagoin C; Bhattacharya U; Grass T; Chhajlany RW; Salamon T; Baldwin K; Pfeiffer L; Lewenstein M; Holzmann M; Dubin F
    Nature; 2022 Sep; 609(7927):485-489. PubMed ID: 36104551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum criticality and incipient phase separation in the thermodynamic properties of the Hubbard model.
    Galanakis D; Khatami E; Mikelsons K; Macridin A; Moreno J; Browne DA; Jarrell M
    Philos Trans A Math Phys Eng Sci; 2011 Apr; 369(1941):1670-86. PubMed ID: 21422020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of spatial charge and spin correlations in the 2D Fermi-Hubbard model.
    Cheuk LW; Nichols MA; Lawrence KR; Okan M; Zhang H; Khatami E; Trivedi N; Paiva T; Rigol M; Zwierlein MW
    Science; 2016 Sep; 353(6305):1260-4. PubMed ID: 27634529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms.
    Hart RA; Duarte PM; Yang TL; Liu X; Paiva T; Khatami E; Scalettar RT; Trivedi N; Huse DA; Hulet RG
    Nature; 2015 Mar; 519(7542):211-4. PubMed ID: 25707803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi-Hubbard chains.
    Boll M; Hilker TA; Salomon G; Omran A; Nespolo J; Pollet L; Bloch I; Gross C
    Science; 2016 Sep; 353(6305):1257-60. PubMed ID: 27634528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous Mott transition in semiconductor moiré superlattices.
    Li T; Jiang S; Li L; Zhang Y; Kang K; Zhu J; Watanabe K; Taniguchi T; Chowdhury D; Fu L; Shan J; Mak KF
    Nature; 2021 Sep; 597(7876):350-354. PubMed ID: 34526709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universal transport signatures in two-electron molecular quantum dots: gate-tunable Hund's rule, underscreened Kondo effect and quantum phase transitions.
    Florens S; Freyn A; Roch N; Wernsdorfer W; Balestro F; Roura-Bas P; Aligia AA
    J Phys Condens Matter; 2011 Jun; 23(24):243202. PubMed ID: 21625035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice.
    Schneider U; Hackermüller L; Will S; Best T; Bloch I; Costi TA; Helmes RW; Rasch D; Rosch A
    Science; 2008 Dec; 322(5907):1520-5. PubMed ID: 19056980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.