These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 28770913)

  • 1. The transition metal surface dependent methane decomposition in graphene chemical vapor deposition growth.
    Wang X; Yuan Q; Li J; Ding F
    Nanoscale; 2017 Aug; 9(32):11584-11589. PubMed ID: 28770913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What are the active carbon species during graphene chemical vapor deposition growth?
    Shu H; Tao XM; Ding F
    Nanoscale; 2015 Feb; 7(5):1627-34. PubMed ID: 25553809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and Assessment of a Criterion for the Application of Brønsted-Evans-Polanyi Relations for Dissociation Catalytic Reactions at Surfaces.
    Ding ZB; Maestri M
    Ind Eng Chem Res; 2019 Jun; 58(23):9864-9874. PubMed ID: 31303692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DFT studies of hydrocarbon combustion on metal surfaces.
    Arya M; Mirzaei AA; Davarpanah AM; Barakati SM; Atashi H; Mohsenzadeh A; Bolton K
    J Mol Model; 2018 Feb; 24(2):47. PubMed ID: 29396776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of synergistic effect over Ni-based bimetallic surfaces: a density functional theory study.
    Fan C; Zhu YA; Xu Y; Zhou Y; Zhou XG; Chen D
    J Chem Phys; 2012 Jul; 137(1):014703. PubMed ID: 22779676
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Sun D; Song X; Liu L; Song C; Liu H; Li Q; Butler K; Xie C; Zhang Z; Xie Y
    J Phys Chem Lett; 2024 Sep; 15(38):9668-9676. PubMed ID: 39283293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Edge-Catalyst Wetting and Orientation Control of Graphene Growth by Chemical Vapor Deposition Growth.
    Yuan Q; Yakobson BI; Ding F
    J Phys Chem Lett; 2014 Sep; 5(18):3093-9. PubMed ID: 26276318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic rates and linear free energy relationships for water dissociation on transition and noble metal dimers.
    Zeinalipour-Yazdi CD; van Santen RA
    J Phys Chem A; 2009 Jun; 113(25):6971-8. PubMed ID: 19456110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trends in water-promoted oxygen dissociation on the transition metal surfaces from first principles.
    Yan M; Huang ZQ; Zhang Y; Chang CR
    Phys Chem Chem Phys; 2017 Jan; 19(3):2364-2371. PubMed ID: 28054681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A DFT study of the NO dissociation on gold surfaces doped with transition metals.
    Fajín JL; Cordeiro MN; Gomes J
    J Chem Phys; 2013 Feb; 138(7):074701. PubMed ID: 23445024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magic carbon clusters in the chemical vapor deposition growth of graphene.
    Yuan Q; Gao J; Shu H; Zhao J; Chen X; Ding F
    J Am Chem Soc; 2012 Feb; 134(6):2970-5. PubMed ID: 22082182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A density functional theory analysis of trends in glycerol decomposition on close-packed transition metal surfaces.
    Liu B; Greeley J
    Phys Chem Chem Phys; 2013 May; 15(17):6475-85. PubMed ID: 23529559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption and diffusion of sulfur on the (111), (100), (110), and (211) surfaces of FCC metals: Density functional theory calculations.
    Bernard Rodríguez CR; Santana JA
    J Chem Phys; 2018 Nov; 149(20):204701. PubMed ID: 30501264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic battle of activated carbon supported transition metal atom towards adsorption and dissociation of molecular hydrogen: Progress towards quantum chemical application on renewable energy resource.
    Dutta A; Pradhan AK; Mondal P
    J Mol Graph Model; 2024 Sep; 131():108804. PubMed ID: 38851045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation and healing of vacancies in graphene chemical vapor deposition (CVD) growth.
    Wang L; Zhang X; Chan HL; Yan F; Ding F
    J Am Chem Soc; 2013 Mar; 135(11):4476-82. PubMed ID: 23444843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure sensitivity of methanol electrooxidation on transition metals.
    Ferrin P; Mavrikakis M
    J Am Chem Soc; 2009 Oct; 131(40):14381-9. PubMed ID: 19754206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved catalytic activity of rhodium monolayer modified nickel (110) surface for the methane dehydrogenation reaction: a first-principles study.
    Bothra P; Pati SK
    Nanoscale; 2014 Jun; 6(12):6738-44. PubMed ID: 24820886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water dissociation on K
    Wang YX; Wang GC
    Phys Chem Chem Phys; 2018 Aug; 20(30):19850-19859. PubMed ID: 30035291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BEP relations for N2 dissociation over stepped transition metal and alloy surfaces.
    Munter TR; Bligaard T; Christensen CH; Nørskov JK
    Phys Chem Chem Phys; 2008 Sep; 10(34):5202-6. PubMed ID: 18728861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear Scaling Relationships for Furan Hydrodeoxygenation over Transition Metal and Bimetallic Surfaces.
    Kanchan DR; Banerjee A
    ChemSusChem; 2023 Sep; 16(18):e202300491. PubMed ID: 37314827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.