These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 28770926)

  • 1. The effect of surface ligands on the optical activity of mercury sulfide nanoparticles.
    Kuno J; Kawai T; Nakashima T
    Nanoscale; 2017 Aug; 9(32):11590-11595. PubMed ID: 28770926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inversion of Optical Activity in the Synthesis of Mercury Sulfide Nanoparticles: Role of Ligand Coordination.
    Kuno J; Imamura Y; Katouda M; Tashiro M; Kawai T; Nakashima T
    Angew Chem Int Ed Engl; 2018 Sep; 57(37):12022-12026. PubMed ID: 30054963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CdSe Quantum Dots Functionalized with Chiral, Thiol-Free Carboxylic Acids: Unraveling Structural Requirements for Ligand-Induced Chirality.
    Varga K; Tannir S; Haynie BE; Leonard BM; Dzyuba SV; Kubelka J; Balaz M
    ACS Nano; 2017 Oct; 11(10):9846-9853. PubMed ID: 28956912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chiral β-HgS quantum dots: Aqueous synthesis, optical properties and cytocompatibility.
    Yang F; Gao G; Wang J; Chen R; Zhu W; Wang L; Ma Z; Luo Z; Sun T
    J Colloid Interface Sci; 2019 Mar; 537():422-430. PubMed ID: 30465977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chirality Inversion of CdSe and CdS Quantum Dots without Changing the Stereochemistry of the Capping Ligand.
    Choi JK; Haynie BE; Tohgha U; Pap L; Elliott KW; Leonard BM; Dzyuba SV; Varga K; Kubelka J; Balaz M
    ACS Nano; 2016 Mar; 10(3):3809-15. PubMed ID: 26938741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical anisotropy and sign reversal in layer-by-layer assembled films from chiral nanoparticles.
    Liang Z; Bernardino K; Han J; Zhou Y; Sun K; de Moura AF; Kotov NA
    Faraday Discuss; 2016 Oct; 191():141-157. PubMed ID: 27458774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Au@poly(N-propargylamide) nanoparticles: preparation and chiral recognition.
    Zhang C; Song C; Yang W; Deng J
    Macromol Rapid Commun; 2013 Aug; 34(16):1319-24. PubMed ID: 23852634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-Controlled
    Zhang W; Yu M; Zhu W; Wang L; Wang J; Yang F; Li J; Gao G
    J Nanosci Nanotechnol; 2020 Apr; 20(4):2567-2572. PubMed ID: 31492277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chirality in thiolate-protected gold clusters.
    Knoppe S; Bürgi T
    Acc Chem Res; 2014 Apr; 47(4):1318-26. PubMed ID: 24588279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical activity and chiral memory of thiol-capped CdTe nanocrystals.
    Nakashima T; Kobayashi Y; Kawai T
    J Am Chem Soc; 2009 Aug; 131(30):10342-3. PubMed ID: 19588974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleation and growth of surfactant-passivated CdS and HgS nanoparticles: Time-dependent absorption and luminescence profiles.
    Mehta SK; Kumar S; Chaudhary S; Bhasin KK
    Nanoscale; 2010 Jan; 2(1):145-52. PubMed ID: 20648377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral 38-gold-atom nanoclusters: synthesis and chiroptical properties.
    Xu Q; Kumar S; Jin S; Qian H; Zhu M; Jin R
    Small; 2014 Mar; 10(5):1008-14. PubMed ID: 24155016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chiral thiol-stabilized silver nanoclusters with well-resolved optical transitions synthesized by a facile etching procedure in aqueous solutions.
    Cathcart N; Mistry P; Makra C; Pietrobon B; Coombs N; Jelokhani-Niaraki M; Kitaev V
    Langmuir; 2009 May; 25(10):5840-6. PubMed ID: 19358597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Assembled Chiral Nanoparticle Superstructures and Identification of Their Collective Optical Activity from Ligand Asymmetry.
    Mao X; Wang Z; Zeng D; Cao H; Zhan Y; Wang Y; Li Q; Shen Y; Wang J
    ACS Nano; 2019 Mar; 13(3):2879-2887. PubMed ID: 30848884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chiral N-isobutyryl-cysteine protected gold nanoparticles: preparation, size selection, and optical activity in the UV-vis and infrared.
    Gautier C; Bürgi T
    J Am Chem Soc; 2006 Aug; 128(34):11079-87. PubMed ID: 16925425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the Metal-Ligand Interface on the Chiroptical Activity of Cysteine-Protected Nanoparticles.
    Rodríguez-Zamora P; Cordero-Silis CA; Garza-Ramos GR; Salazar-Angeles B; Luque-Ceballos JC; Fabila JC; Buendía F; Paz-Borbón LO; Díaz G; Garzón IL
    Small; 2021 Jul; 17(27):e2004288. PubMed ID: 33506610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical activity of achiral ligand SCH3 adsorbed on achiral Ag55 clusters: relationship between adsorption site and circular dichroism.
    Hidalgo F; Noguez C
    ACS Nano; 2013 Jan; 7(1):513-21. PubMed ID: 23256525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A one-step colorimetric method of analysis detection of Hg2+ based on an in situ formation of Au@HgS core-shell structures.
    Zhang F; Zeng L; Yang C; Xin J; Wang H; Wu A
    Analyst; 2011 Jul; 136(13):2825-30. PubMed ID: 21611650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantioseparation and chiral induction in Ag
    Yoshida H; Ehara M; Priyakumar UD; Kawai T; Nakashima T
    Chem Sci; 2020 Jan; 11(9):2394-2400. PubMed ID: 34084402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enantioselective cytotoxicity of ZnS:Mn quantum dots in A549 cells.
    Kuznetsova VA; Visheratina AK; Ryan A; Martynenko IV; Loudon A; Maguire CM; Purcell-Milton F; Orlova AO; Baranov AV; Fedorov AV; Prina-Mello A; Volkov Y; Gun'Ko YK
    Chirality; 2017 Aug; 29(8):403-408. PubMed ID: 28608629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.