These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 28770985)

  • 1. Investigation of the Reversible Intercalation/Deintercalation of Al into the Novel Li
    Jiang J; Li H; Huang J; Li K; Zeng J; Yang Y; Li J; Wang Y; Wang J; Zhao J
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28486-28494. PubMed ID: 28770985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rechargeable Aluminum-Ion Battery Based on MoS
    Li Z; Niu B; Liu J; Li J; Kang F
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9451-9459. PubMed ID: 29469560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. VOCl as a Cathode for Rechargeable Chloride Ion Batteries.
    Gao P; Reddy MA; Mu X; Diemant T; Zhang L; Zhao-Karger Z; Chakravadhanula VS; Clemens O; Behm RJ; Fichtner M
    Angew Chem Int Ed Engl; 2016 Mar; 55(13):4285-90. PubMed ID: 26924132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rod-shaped Cu
    Wu J; Wu D; Zhao M; Wen Z; Jiang J; Zeng J; Zhao J
    Dalton Trans; 2020 Jan; 49(3):729-736. PubMed ID: 31850464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Performance Aluminum-Ion Battery with CuS@C Microsphere Composite Cathode.
    Wang S; Jiao S; Wang J; Chen HS; Tian D; Lei H; Fang DN
    ACS Nano; 2017 Jan; 11(1):469-477. PubMed ID: 27977919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rechargeable aluminum-ion battery based on a VS
    Wu L; Sun R; Xiong F; Pei C; Han K; Peng C; Fan Y; Yang W; An Q; Mai L
    Phys Chem Chem Phys; 2018 Sep; 20(35):22563-22568. PubMed ID: 30159553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-Dimensional Vanadium Carbide (MXene) as a High-Capacity Cathode Material for Rechargeable Aluminum Batteries.
    VahidMohammadi A; Hadjikhani A; Shahbazmohamadi S; Beidaghi M
    ACS Nano; 2017 Nov; 11(11):11135-11144. PubMed ID: 29039915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hollow-Cuboid Li3VO4/C as High-Performance Anodes for Lithium-Ion Batteries.
    Zhang C; Liu C; Nan X; Song H; Liu Y; Zhang C; Cao G
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):680-8. PubMed ID: 26653537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Compensation Effect Mechanism of Fe-Ni Mixed Prussian Blue Analogues in Aqueous Rechargeable Aluminum-Ion Batteries.
    Gao Y; Yang H; Wang X; Bai Y; Zhu N; Guo S; Suo L; Li H; Xu H; Wu C
    ChemSusChem; 2020 Feb; 13(4):732-740. PubMed ID: 31854079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Insights into the Structure Changes and Interface Properties of Li3VO4 Anode for Lithium-Ion Batteries during the Initial Cycle by in-Situ Techniques.
    Zhou LL; Shen SY; Peng XX; Wu LN; Wang Q; Shen CH; Tu TT; Huang L; Li JT; Sun SG
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23739-45. PubMed ID: 27556414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte.
    Angell M; Pan CJ; Rong Y; Yuan C; Lin MC; Hwang BJ; Dai H
    Proc Natl Acad Sci U S A; 2017 Jan; 114(5):834-839. PubMed ID: 28096353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binder-Free V
    Diem AM; Fenk B; Bill J; Burghard Z
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32019197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel K
    Feng Q; Liu Y; Yan J; Feng W; Ji S; Tang Y
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Innovative Freeze-Dried Reduced Graphene Oxide Supported SnS
    Hu Y; Luo B; Ye D; Zhu X; Lyu M; Wang L
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28370537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte.
    Li Z; Zhang S; Terada S; Ma X; Ikeda K; Kamei Y; Zhang C; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16053-62. PubMed ID: 27282172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Performance Rechargeable Aluminum-Selenium Battery with a New Deep Eutectic Solvent Electrolyte: Thiourea-AlCl
    Wu SC; Ai Y; Chen YZ; Wang K; Yang TY; Liao HJ; Su TY; Tang SY; Chen CW; Wu DC; Wang YC; Manikandan A; Shih YC; Lee L; Chueh YL
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27064-27073. PubMed ID: 32364367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Titanium Sulfides as Intercalation-Type Cathode Materials for Rechargeable Aluminum Batteries.
    Geng L; Scheifers JP; Fu C; Zhang J; Fokwa BPT; Guo J
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21251-21257. PubMed ID: 28570049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Prussian Blue/Zinc Secondary Battery with a Bio-Ionic Liquid-Water Mixture as Electrolyte.
    Liu Z; Pulletikurthi G; Endres F
    ACS Appl Mater Interfaces; 2016 May; 8(19):12158-64. PubMed ID: 27119430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Molybdenum Diselenide Helical Nanorod Arrays for High-Performance Aluminum-Ion Batteries.
    Ai Y; Wu SC; Wang K; Yang TY; Liu M; Liao HJ; Sun J; Chen JH; Tang SY; Wu DC; Su TY; Wang YC; Chen HC; Zhang S; Liu WW; Chen YZ; Lee L; He JH; Wang ZM; Chueh YL
    ACS Nano; 2020 Jul; 14(7):8539-8550. PubMed ID: 32520534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.