These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 28771015)
1. Excess Li-Ion Storage on Reconstructed Surfaces of Nanocrystals To Boost Battery Performance. Duan Y; Zhang B; Zheng J; Hu J; Wen J; Miller DJ; Yan P; Liu T; Guo H; Li W; Song X; Zhuo Z; Liu C; Tang H; Tan R; Chen Z; Ren Y; Lin Y; Yang W; Wang CM; Wang LW; Lu J; Amine K; Pan F Nano Lett; 2017 Oct; 17(10):6018-6026. PubMed ID: 28771015 [TBL] [Abstract][Full Text] [Related]
2. Storage and Effective Migration of Li-Ion for Defected β-LiFePO4 Phase Nanocrystals. Guo H; Song X; Zhuo Z; Hu J; Liu T; Duan Y; Zheng J; Chen Z; Yang W; Amine K; Pan F Nano Lett; 2016 Jan; 16(1):601-8. PubMed ID: 26632008 [TBL] [Abstract][Full Text] [Related]
3. Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries. Wang B; Xu B; Liu T; Liu P; Guo C; Wang S; Wang Q; Xiong Z; Wang D; Zhao XS Nanoscale; 2014 Jan; 6(2):986-95. PubMed ID: 24287590 [TBL] [Abstract][Full Text] [Related]
4. Janus Solid-Liquid Interface Enabling Ultrahigh Charging and Discharging Rate for Advanced Lithium-Ion Batteries. Zheng J; Hou Y; Duan Y; Song X; Wei Y; Liu T; Hu J; Guo H; Zhuo Z; Liu L; Chang Z; Wang X; Zherebetskyy D; Fang Y; Lin Y; Xu K; Wang LW; Wu Y; Pan F Nano Lett; 2015 Sep; 15(9):6102-9. PubMed ID: 26305572 [TBL] [Abstract][Full Text] [Related]
5. Challenges and prospects of lithium-sulfur batteries. Manthiram A; Fu Y; Su YS Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063 [TBL] [Abstract][Full Text] [Related]
6. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related]
7. Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC-Li) as novel binder in lithium-ion battery. Qiu L; Shao Z; Wang D; Wang W; Wang F; Wang J Carbohydr Polym; 2014 Oct; 111():588-91. PubMed ID: 25037391 [TBL] [Abstract][Full Text] [Related]
8. Metal/LiF/Li Du J; Wang W; Sheng Eng AY; Liu X; Wan M; Seh ZW; Sun Y Nano Lett; 2020 Jan; 20(1):546-552. PubMed ID: 31775001 [TBL] [Abstract][Full Text] [Related]
9. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
10. Properties and promises of nanosized insertion materials for Li-ion batteries. Wagemaker M; Mulder FM Acc Chem Res; 2013 May; 46(5):1206-15. PubMed ID: 22324286 [TBL] [Abstract][Full Text] [Related]
12. Engineering single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets for high performance lithium ion batteries. Huang SZ; Jin J; Cai Y; Li Y; Tan HY; Wang HE; Van Tendeloo G; Su BL Nanoscale; 2014 Jun; 6(12):6819-27. PubMed ID: 24828316 [TBL] [Abstract][Full Text] [Related]
13. Architecting hierarchical shell porosity of hollow prussian blue-derived iron oxide for enhanced Li storage. Zhao Z; Liu X; Luan C; Liu X; Wang D; Qin T; Sui L; Zhang W J Microsc; 2019 Nov; 276(2):53-62. PubMed ID: 31603242 [TBL] [Abstract][Full Text] [Related]
14. Effect of Ru Doping on the Properties of LiFePO Gao Y; Xiong K; Zhang H; Zhu B ACS Omega; 2021 Jun; 6(22):14122-14129. PubMed ID: 34124434 [TBL] [Abstract][Full Text] [Related]
15. Cation-Disordered Lithium-Excess Li-Fe-Ti Oxide Cathode Materials for Enhanced Li-Ion Storage. Yang M; Jin J; Shen Y; Sun S; Zhao X; Shen X ACS Appl Mater Interfaces; 2019 Nov; 11(47):44144-44152. PubMed ID: 31687798 [TBL] [Abstract][Full Text] [Related]
16. Ab initio identification of the Li-rich phase in LiFePO Zeng H; Gu Y; Teng G; Liu Y; Zheng J; Pan F Phys Chem Chem Phys; 2018 Jun; 20(25):17497-17503. PubMed ID: 29911701 [TBL] [Abstract][Full Text] [Related]
17. Engineering 3D bicontinuous hierarchically macro-mesoporous LiFePO4/C nanocomposite for lithium storage with high rate capability and long cycle stability. Zhang Q; Huang SZ; Jin J; Liu J; Li Y; Wang HE; Chen LH; Wang BJ; Su BL Sci Rep; 2016 May; 6():25942. PubMed ID: 27181195 [TBL] [Abstract][Full Text] [Related]
18. A Prelithiation Separator for Compensating the Initial Capacity Loss of Lithium-Ion Batteries. Rao Z; Wu J; He B; Chen W; Wang H; Fu Q; Huang Y ACS Appl Mater Interfaces; 2021 Aug; 13(32):38194-38201. PubMed ID: 34342445 [TBL] [Abstract][Full Text] [Related]
19. Study on novel functional materials carboxymethyl cellulose lithium (CMC-Li) improve high-performance lithium-ion battery. Qiu L; Shao Z; Xiang P; Wang D; Zhou Z; Wang F; Wang W; Wang J Carbohydr Polym; 2014 Sep; 110():121-7. PubMed ID: 24906737 [TBL] [Abstract][Full Text] [Related]
20. Sb nanocrystal-anchored hollow carbon microspheres for high-capacity and high-cycling performance lithium-ion batteries. Guo M; Chen J; Meng W; Cheng L; Bai Z; Wang Z; Yang F Nanotechnology; 2020 Mar; 31(13):135404. PubMed ID: 31810067 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]