These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 28771237)

  • 1. Mechanical isolation, and measurement of force and myoplasmic free [Ca
    Cheng AJ; Westerblad H
    Nat Protoc; 2017 Sep; 12(9):1763-1776. PubMed ID: 28771237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of fura red as an intracellular calcium indicator in frog skeletal muscle fibers.
    Kurebayashi N; Harkins AB; Baylor SM
    Biophys J; 1993 Jun; 64(6):1934-60. PubMed ID: 8369415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Ca
    Glass LD; Cheng AJ; MacIntosh BR
    Pflugers Arch; 2018 Aug; 470(8):1243-1254. PubMed ID: 29671103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium release domains in mammalian skeletal muscle studied with two-photon imaging and spot detection techniques.
    Gómez J; Neco P; DiFranco M; Vergara JL
    J Gen Physiol; 2006 Jun; 127(6):623-37. PubMed ID: 16735751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of the myosin-II inhibitor N-benzyl-p-toluene sulphonamide on fatigue in mouse single intact toe muscle fibres.
    Bruton J; Pinniger GJ; Lännergren J; Westerblad H
    Acta Physiol (Oxf); 2006 Jan; 186(1):59-66. PubMed ID: 16497180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progressive impairment of CaV1.1 function in the skeletal muscle of mice expressing a mutant type 1 Cu/Zn superoxide dismutase (G93A) linked to amyotrophic lateral sclerosis.
    Beqollari D; Romberg CF; Dobrowolny G; Martini M; Voss AA; Musarò A; Bannister RA
    Skelet Muscle; 2016; 6():24. PubMed ID: 27340545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of myofiber isolation technique on sarcolemma biomechanics.
    Garcia-Pelagio KP; Pratt SJP; Lovering RM
    Biotechniques; 2020 Nov; 69(5):388-391. PubMed ID: 33000629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resting cytoplasmic free Ca2+ concentration in frog skeletal muscle measured with fura-2 conjugated to high molecular weight dextran.
    Konishi M; Watanabe M
    J Gen Physiol; 1995 Dec; 106(6):1123-50. PubMed ID: 8786353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AM-loading of fluorescent Ca2+ indicators into intact single fibers of frog muscle.
    Zhao M; Hollingworth S; Baylor SM
    Biophys J; 1997 Jun; 72(6):2736-47. PubMed ID: 9168048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sarcoplasmic reticulum Ca2+ release declines in muscle fibers from aging mice.
    Jiménez-Moreno R; Wang ZM; Gerring RC; Delbono O
    Biophys J; 2008 Apr; 94(8):3178-88. PubMed ID: 18178643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attenuated Ca(2+) release in a mouse model of limb girdle muscular dystrophy 2A.
    DiFranco M; Kramerova I; Vergara JL; Spencer MJ
    Skelet Muscle; 2016; 6():11. PubMed ID: 26913171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insulin-like growth factor-1 prevents age-related decrease in specific force and intracellular Ca2+ in single intact muscle fibres from transgenic mice.
    Gonzalez E; Messi ML; Zheng Z; Delbono O
    J Physiol; 2003 Nov; 552(Pt 3):833-44. PubMed ID: 12937290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ detection and measurement of intracellular reactive oxygen species in single isolated mature skeletal muscle fibers by real time fluorescence microscopy.
    Palomero J; Pye D; Kabayo T; Spiller DG; Jackson MJ
    Antioxid Redox Signal; 2008 Aug; 10(8):1463-74. PubMed ID: 18407749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New cell biological applications of the laser microbeam technique: the microdissection and skinning of muscle fibers and the perforation and fusion of sarcolemma vesicles.
    Veigel C; Steubing RW; Harim A; Weber C; Greulich KO; Fink RH
    Eur J Cell Biol; 1994 Feb; 63(1):140-8. PubMed ID: 7516289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time measurement of nitric oxide in single mature mouse skeletal muscle fibres during contractions.
    Pye D; Palomero J; Kabayo T; Jackson MJ
    J Physiol; 2007 May; 581(Pt 1):309-18. PubMed ID: 17331997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and utilization of the flexor digitorum brevis for assessing skeletal muscle function.
    Tarpey MD; Amorese AJ; Balestrieri NP; Ryan TE; Schmidt CA; McClung JM; Spangenburg EE
    Skelet Muscle; 2018 Apr; 8(1):14. PubMed ID: 29665848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KATP channel deficiency in mouse flexor digitorum brevis causes fibre damage and impairs Ca2+ release and force development during fatigue in vitro.
    Cifelli C; Bourassa F; Gariépy L; Banas K; Benkhalti M; Renaud JM
    J Physiol; 2007 Jul; 582(Pt 2):843-57. PubMed ID: 17510189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intramuscular Contributions to Low-Frequency Force Potentiation Induced by a High-Frequency Conditioning Stimulation.
    Cheng AJ; Neyroud D; Kayser B; Westerblad H; Place N
    Front Physiol; 2017; 8():712. PubMed ID: 28979214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The action potential-evoked sarcoplasmic reticulum calcium release is impaired in mdx mouse muscle fibres.
    Woods CE; Novo D; DiFranco M; Vergara JL
    J Physiol; 2004 May; 557(Pt 1):59-75. PubMed ID: 15004213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of sub-membrane [Ca2+] in adult myofibers and cytosolic [Ca2+] in myotubes from normal and mdx mice using the Ca2+ indicator FFP-18.
    Han R; Grounds MD; Bakker AJ
    Cell Calcium; 2006 Sep; 40(3):299-307. PubMed ID: 16765438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.