BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28771551)

  • 1. Computational investigation of conformational variability and allostery in cathepsin K and other related peptidases.
    Novinec M
    PLoS One; 2017; 12(8):e0182387. PubMed ID: 28771551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel allosteric mechanism in the cysteine peptidase cathepsin K discovered by computational methods.
    Novinec M; Korenč M; Caflisch A; Ranganathan R; Lenarčič B; Baici A
    Nat Commun; 2014; 5():3287. PubMed ID: 24518821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An allosteric site enables fine-tuning of cathepsin K by diverse effectors.
    Novinec M; Rebernik M; Lenarčič B
    FEBS Lett; 2016 Dec; 590(24):4507-4518. PubMed ID: 27859061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational flexibility and allosteric regulation of cathepsin K.
    Novinec M; Kovacic L; Lenarcic B; Baici A
    Biochem J; 2010 Jul; 429(2):379-89. PubMed ID: 20450492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the activity modification space of the cysteine peptidase cathepsin K with novel allosteric modifiers.
    Novinec M; Lenarčič B; Baici A
    PLoS One; 2014; 9(9):e106642. PubMed ID: 25184245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human cathepsin L, a papain-like collagenase without proline specificity.
    Korenč M; Lenarčič B; Novinec M
    FEBS J; 2015 Nov; 282(22):4328-40. PubMed ID: 26306868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cathepsin V, a novel and potent elastolytic activity expressed in activated macrophages.
    Yasuda Y; Li Z; Greenbaum D; Bogyo M; Weber E; Brömme D
    J Biol Chem; 2004 Aug; 279(35):36761-70. PubMed ID: 15192101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of potential allosteric binding sites in cathepsin K based on intramolecular communication.
    Rocha GV; Bastos LS; Costa MGS
    Proteins; 2020 Dec; 88(12):1675-1687. PubMed ID: 32683717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of human procathepsin X: a cysteine protease with the proregion covalently linked to the active site cysteine.
    Sivaraman J; Nägler DK; Zhang R; Ménard R; Cygler M
    J Mol Biol; 2000 Jan; 295(4):939-51. PubMed ID: 10656802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal and molecular structures of a cathepsin K:chondroitin sulfate complex.
    Li Z; Kienetz M; Cherney MM; James MN; Brömme D
    J Mol Biol; 2008 Oct; 383(1):78-91. PubMed ID: 18692071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional aspects of papain-like cysteine proteinases and their protein inhibitors.
    Turk B; Turk V; Turk D
    Biol Chem; 1997; 378(3-4):141-50. PubMed ID: 9165064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of papain as a model for the structure-based design of cathepsin K inhibitors: crystal structures of two papain-inhibitor complexes demonstrate binding to S'-subsites.
    LaLonde JM; Zhao B; Smith WW; Janson CA; DesJarlais RL; Tomaszek TA; Carr TJ; Thompson SK; Oh HJ; Yamashita DS; Veber DF; Abdel-Meguid SS
    J Med Chem; 1998 Nov; 41(23):4567-76. PubMed ID: 9804696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rat cathepsin K: Enzymatic specificity and regulation of its collagenolytic activity.
    Lecaille F; Chazeirat T; Bojarski KK; Renault J; Saidi A; Prasad VGNV; Samsonov S; Lalmanach G
    Biochim Biophys Acta Proteins Proteom; 2020 Feb; 1868(2):140318. PubMed ID: 31740411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interdependency of sequence and positional specificities for cysteine proteases of the papain family.
    Nägler DK; Tam W; Storer AC; Krupa JC; Mort JS; Ménard R
    Biochemistry; 1999 Apr; 38(15):4868-74. PubMed ID: 10200176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing cathepsin K activity with a selective substrate spanning its active site.
    Lecaille F; Weidauer E; Juliano MA; Brömme D; Lalmanach G
    Biochem J; 2003 Oct; 375(Pt 2):307-12. PubMed ID: 12837132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional analysis of C1 family cysteine peptidases in the larval gut of Тenebrio molitor and Tribolium castaneum.
    Martynov AG; Elpidina EN; Perkin L; Oppert B
    BMC Genomics; 2015 Feb; 16(1):75. PubMed ID: 25757364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carboxy-monopeptidase substrate specificity of human cathepsin X.
    Devanathan G; Turnbull JL; Ziomek E; Purisima EO; Ménard R; Sulea T
    Biochem Biophys Res Commun; 2005 Apr; 329(2):445-52. PubMed ID: 15737607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-function relationship of Chikungunya nsP2 protease: A comparative study with papain.
    Ramakrishnan C; Kutumbarao NHV; Suhitha S; Velmurugan D
    Chem Biol Drug Des; 2017 May; 89(5):772-782. PubMed ID: 28054451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of collagenase activities of human cathepsins by glycosaminoglycans.
    Li Z; Yasuda Y; Li W; Bogyo M; Katz N; Gordon RE; Fields GB; Brömme D
    J Biol Chem; 2004 Feb; 279(7):5470-9. PubMed ID: 14645229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and kinetic characterization of hyperbolic inhibitors of human cathepsins K and S based on a succinimide scaffold.
    Goričan T; Ciber L; Petek N; Svete J; Novinec M
    Bioorg Chem; 2021 Oct; 115():105213. PubMed ID: 34364050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.