BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 28771713)

  • 1. EPA blocks TNF-α-induced inhibition of sugar uptake in Caco-2 cells via GPR120 and AMPK.
    Castilla-Madrigal R; Barrenetxe J; Moreno-Aliaga MJ; Lostao MP
    J Cell Physiol; 2018 Mar; 233(3):2426-2433. PubMed ID: 28771713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DHA and its derived lipid mediators MaR1, RvD1 and RvD2 block TNF-α inhibition of intestinal sugar and glutamine uptake in Caco-2 cells.
    Castilla-Madrigal R; Gil-Iturbe E; López de Calle M; Moreno-Aliaga MJ; Lostao MP
    J Nutr Biochem; 2020 Feb; 76():108264. PubMed ID: 31760230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Basolateral presence of the proinflammatory cytokine tumor necrosis factor -α and secretions from adipocytes and macrophages reduce intestinal sugar transport.
    Castilla-Madrigal R; Gil-Iturbe E; Sáinz N; Moreno-Aliaga MJ; Lostao MP
    J Cell Physiol; 2019 Apr; 234(4):4352-4361. PubMed ID: 30246472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TNFα regulates sugar transporters in the human intestinal epithelial cell line Caco-2.
    Barrenetxe J; Sánchez O; Barber A; Gascón S; Rodríguez-Yoldi MJ; Lostao MP
    Cytokine; 2013 Oct; 64(1):181-7. PubMed ID: 23910014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiotrophin-1 decreases intestinal sugar uptake in mice and in Caco-2 cells.
    López-Yoldi M; Castilla-Madrigal R; Lostao MP; Barber A; Prieto J; Martínez JA; Bustos M; Moreno-Aliaga MJ
    Acta Physiol (Oxf); 2016 Jul; 217(3):217-26. PubMed ID: 26972986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory effect of TNF-alpha on the intestinal absorption of galactose.
    Amador P; García-Herrera J; Marca MC; de la Osada J; Acín S; Navarro MA; Salvador MT; Lostao MP; Rodríguez-Yoldi MJ
    J Cell Biochem; 2007 May; 101(1):99-111. PubMed ID: 17177295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GLUT12 expression and regulation in murine small intestine and human Caco-2 cells.
    Gil-Iturbe E; Castilla-Madrigal R; Barrenetxe J; Villaro AC; Lostao MP
    J Cell Physiol; 2019 Apr; 234(4):4396-4408. PubMed ID: 30352123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The apical (hPepT1) and basolateral peptide transport systems of Caco-2 cells are regulated by AMP-activated protein kinase.
    Pieri M; Christian HC; Wilkins RJ; Boyd CA; Meredith D
    Am J Physiol Gastrointest Liver Physiol; 2010 Jul; 299(1):G136-43. PubMed ID: 20430871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Omega-3 and omega-6 PUFAs induce the same GPR120-mediated signalling events, but with different kinetics and intensity in Caco-2 cells.
    Mobraten K; Haug TM; Kleiveland CR; Lea T
    Lipids Health Dis; 2013 Jul; 12():101. PubMed ID: 23849180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 5-aminoimidazole-4-carboxamide riboside (AICAR) enhances GLUT2-dependent jejunal glucose transport: a possible role for AMPK.
    Walker J; Jijon HB; Diaz H; Salehi P; Churchill T; Madsen KL
    Biochem J; 2005 Jan; 385(Pt 2):485-91. PubMed ID: 15367103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eicosapentaenoic acid inhibits tumour necrosis factor-α-induced lipolysis in murine cultured adipocytes.
    Lorente-Cebrián S; Bustos M; Marti A; Fernández-Galilea M; Martinez JA; Moreno-Aliaga MJ
    J Nutr Biochem; 2012 Mar; 23(3):218-27. PubMed ID: 21497077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of eicosapentaenoic acid on mRNA expression of tight junction protein ZO-1 in intestinal epithelial cells after Escherichia coli LF82 infection].
    Hao LJ; Lin Y; Zhang W; Tian J; Wang Y; Chen PD; Hu CK; Zeng LC; Yang J; Wang BX; Jiang X
    Zhongguo Dang Dai Er Ke Za Zhi; 2017 Jun; 19(6):693-698. PubMed ID: 28606239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eicosapentaenoic acid stimulates AMP-activated protein kinase and increases visfatin secretion in cultured murine adipocytes.
    Lorente-Cebrián S; Bustos M; Marti A; Martinez JA; Moreno-Aliaga MJ
    Clin Sci (Lond); 2009 Aug; 117(6):243-9. PubMed ID: 19296827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor necrosis factor alpha reduces intestinal vitamin C uptake: a role for NF-κB-mediated signaling.
    Subramanian VS; Sabui S; Subramenium GA; Marchant JS; Said HM
    Am J Physiol Gastrointest Liver Physiol; 2018 Aug; 315(2):G241-G248. PubMed ID: 29631379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eicosapentaenoic acid and docosahexaenoic acid modulate mitogen-activated protein kinase activity in endothelium.
    Xue H; Wan M; Song D; Li Y; Li J
    Vascul Pharmacol; 2006 Jun; 44(6):434-9. PubMed ID: 16616699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of Na+-coupled glucose carrier SGLT1 by AMP-activated protein kinase.
    Sopjani M; Bhavsar SK; Fraser S; Kemp BE; Föller M; Lang F
    Mol Membr Biol; 2010 Apr; 27(2-3):137-44. PubMed ID: 20334581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of tumor necrosis factor-alpha on D-fructose intestinal transport in rabbits.
    García-Herrera J; Navarro MA; Marca MC; de la Osada J; Rodríguez-Yoldi MJ
    Cytokine; 2004 Jan; 25(1):21-30. PubMed ID: 14687582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Moderate Alcohol Consumption Uniquely Regulates Sodium-Dependent Glucose Co-Transport in Rat Intestinal Epithelial Cells In Vitro and In Vivo.
    Butts M; Singh S; Haynes J; Arthur S; Sundaram U
    J Nutr; 2020 Apr; 150(4):747-755. PubMed ID: 31769840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eicosapentaenoic acid attenuates dexamethasome-induced apoptosis by inducing adaptive autophagy via GPR120 in murine bone marrow-derived mesenchymal stem cells.
    Gao B; Han YH; Wang L; Lin YJ; Sun Z; Lu WG; Hu YQ; Li JQ; Lin XS; Liu BH; Jie Q; Yang L; Luo ZJ
    Cell Death Dis; 2016 May; 7(5):e2235. PubMed ID: 27228350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eicosapentaenoic acid inhibits intestinal β-carotene absorption by downregulation of lipid transporter expression via PPAR-α dependent mechanism.
    Mashurabad PC; Kondaiah P; Palika R; Ghosh S; Nair MK; Raghu P
    Arch Biochem Biophys; 2016 Jan; 590():118-124. PubMed ID: 26577021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.