BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 28771812)

  • 1. The role of external carbonic anhydrase in photosynthesis during growth of the marine diatom Chaetoceros muelleri.
    Smith-Harding TJ; Beardall J; Mitchell JG
    J Phycol; 2017 Dec; 53(6):1159-1170. PubMed ID: 28771812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum.
    Kikutani S; Nakajima K; Nagasato C; Tsuji Y; Miyatake A; Matsuda Y
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9828-33. PubMed ID: 27531955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of CO2-induced seawater acidification on growth, photosynthesis and inorganic carbon acquisition of the harmful bloom-forming marine microalga, Karenia mikimotoi.
    Hu S; Zhou B; Wang Y; Wang Y; Zhang X; Zhao Y; Zhao X; Tang X
    PLoS One; 2017; 12(8):e0183289. PubMed ID: 28813504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nature of the CO2 -concentrating mechanisms in a marine diatom, Thalassiosira pseudonana.
    Clement R; Dimnet L; Maberly SC; Gontero B
    New Phytol; 2016 Mar; 209(4):1417-27. PubMed ID: 26529678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon concentrating mechanisms in eukaryotic marine phytoplankton.
    Reinfelder JR
    Ann Rev Mar Sci; 2011; 3():291-315. PubMed ID: 21329207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomass, total lipid production, and fatty acid composition of the marine diatom Chaetoceros muelleri in response to different CO2 levels.
    Wang XW; Liang JR; Luo CS; Chen CP; Gao YH
    Bioresour Technol; 2014 Jun; 161():124-30. PubMed ID: 24698739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell size influences inorganic carbon acquisition in artificially selected phytoplankton.
    Malerba ME; Marshall DJ; Palacios MM; Raven JA; Beardall J
    New Phytol; 2021 Mar; 229(5):2647-2659. PubMed ID: 33156533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The requirement for external carbonic anhydrase in diatoms is influenced by the supply and demand for dissolved inorganic carbon.
    Keys M; Hopkinson B; Highfield A; Chrachri A; Brownlee C; Wheeler GL
    J Phycol; 2024 Feb; 60(1):29-45. PubMed ID: 38127095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a CO
    Tsuji Y; Kusi-Appiah G; Kozai N; Fukuda Y; Yamano T; Fukuzawa H
    Mar Biotechnol (NY); 2021 Jun; 23(3):456-462. PubMed ID: 34109463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses of carbonic anhydrases and Rubisco to abrupt CO
    Zeng X; Jin P; Zou D; Liu Y; Xia J
    Environ Sci Pollut Res Int; 2019 Jun; 26(16):16388-16395. PubMed ID: 30982194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The carbonic anhydrase CAH1 is an essential component of the carbon-concentrating mechanism in
    Gee CW; Niyogi KK
    Proc Natl Acad Sci U S A; 2017 Apr; 114(17):4537-4542. PubMed ID: 28396394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of HCO
    Fan W; Liu Y; Xu X; Dong X; Wang H
    Plant Physiol Biochem; 2024 Apr; 209():108530. PubMed ID: 38520966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photosynthetic use of inorganic carbon in deep-water kelps from the Strait of Gibraltar.
    García-Sánchez MJ; Delgado-Huertas A; Fernández JA; Flores-Moya A
    Photosynth Res; 2016 Mar; 127(3):295-305. PubMed ID: 26275764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity of CO2-concentrating mechanisms and responses to CO2 concentration in marine and freshwater diatoms.
    Clement R; Jensen E; Prioretti L; Maberly SC; Gontero B
    J Exp Bot; 2017 Jun; 68(14):3925-3935. PubMed ID: 28369472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of carbon dioxide acquisition and CO
    Matsuda Y; Hopkinson BM; Nakajima K; Dupont CL; Tsuji Y
    Philos Trans R Soc Lond B Biol Sci; 2017 Sep; 372(1728):. PubMed ID: 28717013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of ocean acidification on carbon acquisition in two bloom-forming dinoflagellate species.
    Eberlein T; Van de Waal DB; Rost B
    Physiol Plant; 2014 Aug; 151(4):468-79. PubMed ID: 24320746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Responses of CO
    Huang W; Jin Q; Yin L; Li W
    Ecotoxicol Environ Saf; 2020 Oct; 202():110955. PubMed ID: 32800229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon dioxide-concentrating mechanism and the development of extracellular carbonic anhydrase in the marine picoeukaryote Micromonas pusilla.
    Iglesias-Rodríguez MD; Nimer NA; Merrett MJ
    New Phytol; 1998 Dec; 140(4):685-690. PubMed ID: 33862948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The diversity of CO2-concentrating mechanisms in marine diatoms as inferred from their genetic content.
    Shen C; Dupont CL; Hopkinson BM
    J Exp Bot; 2017 Jun; 68(14):3937-3948. PubMed ID: 28510761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological Responses of a Model Marine Diatom to Fast pH Changes: Special Implications of Coastal Water Acidification.
    Wu Y; Beardall J; Gao K
    PLoS One; 2015; 10(10):e0141163. PubMed ID: 26496125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.