These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 28771843)
21. Counter-ligand control of the electronic structure in dinuclear copper-tetrakisguanidine complexes. Ziesak A; Wesp T; Hübner O; Kaifer E; Wadepohl H; Himmel HJ Dalton Trans; 2015 Nov; 44(44):19111-25. PubMed ID: 26477859 [TBL] [Abstract][Full Text] [Related]
22. Geometrical benchmarking and analysis of redox potentials of copper(I/II) guanidine-quinoline complexes: Comparison of semi-empirical tight-binding and DFT methods and the challenge of describing the entatic state (part III). Raßpe-Lange L; Hoffmann A; Gertig C; Heck J; Leonhard K; Herres-Pawlis S J Comput Chem; 2023 Jan; 44(3):319-328. PubMed ID: 35640228 [TBL] [Abstract][Full Text] [Related]
23. Syntheses, structural analyses and redox kinetics of four-coordinate [CuL2]2+ and five-coordinate [CuL2(solvent)]2+ complexes (L = 6,6'-dimethyl-2,2'-bipyridine or 2,9-dimethyl-1,10-phenanthroline): completely gated reduction reaction of [Cu(dmp)2]2+ in nitromethane. Itoh S; Kishikawa N; Suzuki T; Takagi HD Dalton Trans; 2005 Mar; (6):1066-78. PubMed ID: 15739009 [TBL] [Abstract][Full Text] [Related]
25. The strength of hydrogen bonding to metal-bound ligands can contribute to changes in the redox behaviour of metal centres. Mareque Rivas JC; Hinchley SL; Metteau L; Parsons S Dalton Trans; 2006 May; (19):2316-22. PubMed ID: 16688319 [TBL] [Abstract][Full Text] [Related]
26. Induced chirality-at-metal and diastereoselectivity at Δ/Λ-configured distorted square-planar copper complexes by enantiopure Schiff base ligands: combined circular dichroism, DFT and X-ray structural studies. Enamullah M; Uddin AK; Pescitelli G; Berardozzi R; Makhloufi G; Vasylyeva V; Chamayou AC; Janiak C Dalton Trans; 2014 Feb; 43(8):3313-29. PubMed ID: 24366532 [TBL] [Abstract][Full Text] [Related]
27. Electronic structural information from Q-band ENDOR on the type 1 and type 2 copper liganding environment in wild-type and mutant forms of copper-containing nitrite reductase. Veselov A; Olesen K; Sienkiewicz A; Shapleigh JP; Scholes CP Biochemistry; 1998 Apr; 37(17):6095-105. PubMed ID: 9558348 [TBL] [Abstract][Full Text] [Related]
28. Magnetic properties of poly(propylene imine)-copper dendromesogenic complexes: An EPR study. Domracheva N; Mirea A; Schwoerer M; Torre-Lorente L; Lattermann G Chemphyschem; 2006 Dec; 7(12):2567-77. PubMed ID: 17089431 [TBL] [Abstract][Full Text] [Related]
29. Copper(I) complex O(2)-reactivity with a N(3)S thioether ligand: a copper-dioxygen adduct including sulfur ligation, ligand oxygenation, and comparisons with all nitrogen ligand analogues. Lee DH; Hatcher LQ; Vance MA; Sarangi R; Milligan AE; Sarjeant AA; Incarvito CD; Rheingold AL; Hodgson KO; Hedman B; Solomon EI; Karlin KD Inorg Chem; 2007 Jul; 46(15):6056-68. PubMed ID: 17580938 [TBL] [Abstract][Full Text] [Related]
30. Stimulation of Redox-Induced Electron Transfer by Interligand Hydrogen Bonding in a Cobalt Complex with Redox-Active Guanidine Ligand. Lohmeyer L; Schön F; Kaifer E; Himmel HJ Angew Chem Int Ed Engl; 2021 Apr; 60(18):10415-10422. PubMed ID: 33616266 [TBL] [Abstract][Full Text] [Related]
31. Electrochemical behavior of the tris(pyridine)-Cu funnel complexes: an overall induced-fit process involving an entatic state through a supramolecular stress. Le Poul N; Campion M; Izzet G; Douziech B; Reinaud O; Le Mest Y J Am Chem Soc; 2005 Apr; 127(15):5280-1. PubMed ID: 15826140 [TBL] [Abstract][Full Text] [Related]
32. Metal-ligand charge-transfer-promoted photoelectronic Bergman cyclization of copper metalloenediynes: photochemical DNA cleavage via C-4' H-atom abstraction. Benites PJ; Holmberg RC; Rawat DS; Kraft BJ; Klein LJ; Peters DG; Thorp HH; Zaleski JM J Am Chem Soc; 2003 May; 125(21):6434-46. PubMed ID: 12785783 [TBL] [Abstract][Full Text] [Related]
33. Electron transfer reactions between copper(II) porphyrin complexes and various oxidizing reagents in acetonitrile. Inamo M; Kumagai H; Harada U; Itoh S; Iwatsuki S; Ishihara K; Takagi HD Dalton Trans; 2004 Jun; (11):1703-7. PubMed ID: 15252565 [TBL] [Abstract][Full Text] [Related]
35. The cupric geometry of blue copper proteins is not strained. Ryde U; Olsson MH; Pierloot K; Roos BO J Mol Biol; 1996 Aug; 261(4):586-96. PubMed ID: 8794878 [TBL] [Abstract][Full Text] [Related]
36. Reporting a unique example of electronic bistability observed in the form of valence tautomerism with a copper(II) helicate of a redox-active nitrogenous heterocyclic ligand. Kundu N; Maity M; Chatterjee PB; Teat SJ; Endo A; Chaudhury M J Am Chem Soc; 2011 Dec; 133(50):20104-7. PubMed ID: 22085134 [TBL] [Abstract][Full Text] [Related]
38. Modulation of the Bonding between Copper and a Redox-Active Ligand by Hydrogen Bonds and Its Effect on Electronic Coupling and Spin States. Ross DL; Jasniewski AJ; Ziller JW; Bominaar EL; Hendrich MP; Borovik AS J Am Chem Soc; 2024 Jan; 146(1):500-513. PubMed ID: 38150413 [TBL] [Abstract][Full Text] [Related]
39. Cobalt(II), nickel(II) and copper(II) complexes of a hexadentate pyridine amide ligand. Effect of donor atom (ether vs. thioether) on coordination geometry, spin-state of cobalt and M(III)-M(II) redox potential. Pandey S; Das PP; Singh AK; Mukherjee R Dalton Trans; 2011 Oct; 40(40):10758-68. PubMed ID: 21952226 [TBL] [Abstract][Full Text] [Related]