These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 28771853)

  • 41. Formic Acid as a Potential On-Board Hydrogen Storage Method: Development of Homogeneous Noble Metal Catalysts for Dehydrogenation Reactions.
    Guo J; Yin CK; Zhong DL; Wang YL; Qi T; Liu GH; Shen LT; Zhou QS; Peng ZH; Yao H; Li XB
    ChemSusChem; 2021 Jul; 14(13):2655-2681. PubMed ID: 33963668
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Efficient Hydrogen Storage and Production Using a Catalyst with an Imidazoline-Based, Proton-Responsive Ligand.
    Wang L; Onishi N; Murata K; Hirose T; Muckerman JT; Fujita E; Himeda Y
    ChemSusChem; 2017 Mar; 10(6):1071-1075. PubMed ID: 27860395
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Formic acid catalyzed hydrolysis of SO3 in the gas phase: a barrierless mechanism for sulfuric acid production of potential atmospheric importance.
    Hazra MK; Sinha A
    J Am Chem Soc; 2011 Nov; 133(43):17444-53. PubMed ID: 21932843
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficient catalytic interconversion between NADH and NAD+ accompanied by generation and consumption of hydrogen with a water-soluble iridium complex at ambient pressure and temperature.
    Maenaka Y; Suenobu T; Fukuzumi S
    J Am Chem Soc; 2012 Jan; 134(1):367-74. PubMed ID: 22122737
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures.
    Hull JF; Himeda Y; Wang WH; Hashiguchi B; Periana R; Szalda DJ; Muckerman JT; Fujita E
    Nat Chem; 2012 Mar; 4(5):383-8. PubMed ID: 22522258
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ligand-promoted dehydrogenation of alcohols catalyzed by Cp*Ir complexes. A new catalytic system for oxidant-free oxidation of alcohols.
    Fujita K; Tanino N; Yamaguchi R
    Org Lett; 2007 Jan; 9(1):109-11. PubMed ID: 17192097
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis of Dicarboxylic Acids from Aqueous Solutions of Diols with Hydrogen Evolution Catalyzed by an Iridium Complex.
    Toyooka G; Fujita KI
    ChemSusChem; 2020 Aug; 13(15):3820-3824. PubMed ID: 32449604
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synergic Catalysis of PdCu Alloy Nanoparticles within a Macroreticular Basic Resin for Hydrogen Production from Formic Acid.
    Mori K; Tanaka H; Dojo M; Yoshizawa K; Yamashita H
    Chemistry; 2015 Aug; 21(34):12085-92. PubMed ID: 26178687
    [TBL] [Abstract][Full Text] [Related]  

  • 49. DFT study of the mechanisms of in water Au(I)-catalyzed tandem [3,3]-rearrangement/Nazarov reaction/[1,2]-hydrogen shift of enynyl acetates: a proton-transport catalysis strategy in the water-catalyzed [1,2]-hydrogen shift.
    Shi FQ; Li X; Xia Y; Zhang L; Yu ZX
    J Am Chem Soc; 2007 Dec; 129(50):15503-12. PubMed ID: 18027935
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanistic studies on the cytochrome P450-catalyzed dehydrogenation of 3-methylindole.
    Skiles GL; Yost GS
    Chem Res Toxicol; 1996; 9(1):291-7. PubMed ID: 8924606
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydrogen Production and Storage on a Formic Acid/Bicarbonate Platform using Water-Soluble N-Heterocyclic Carbene Complexes of Late Transition Metals.
    Jantke D; Pardatscher L; Drees M; Cokoja M; Herrmann WA; Kühn FE
    ChemSusChem; 2016 Oct; 9(19):2849-2854. PubMed ID: 27618800
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evidence for an induced conformational change in the catalytic mechanism of homoisocitrate dehydrogenase for Saccharomyces cerevisiae: Characterization of the D271N mutant enzyme.
    Hsu C; West AH; Cook PF
    Arch Biochem Biophys; 2015 Oct; 584():20-7. PubMed ID: 26325079
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dehydrogenation of Formic Acid Catalyzed by a Ruthenium Complex with an N,N'-Diimine Ligand.
    Guan C; Zhang DD; Pan Y; Iguchi M; Ajitha MJ; Hu J; Li H; Yao C; Huang MH; Min S; Zheng J; Himeda Y; Kawanami H; Huang KW
    Inorg Chem; 2017 Jan; 56(1):438-445. PubMed ID: 27983821
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Detailed spectroscopic, thermodynamic, and kinetic studies on the protolytic equilibria of Fe(III)cydta and the activation of hydrogen peroxide.
    Brausam A; Maigut J; Meier R; Szilágyi PA; Buschmann HJ; Massa W; Homonnay Z; van Eldik R
    Inorg Chem; 2009 Aug; 48(16):7864-84. PubMed ID: 19618946
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Homogeneous dehydrogenation of liquid organic hydrogen carriers catalyzed by an iridium PCP complex.
    Wang Z; Belli J; Jensen CM
    Faraday Discuss; 2011; 151():297-305; discussion 385-97. PubMed ID: 22455076
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Kinetics and mechanism of the Ir(III)-catalyzed oxidation of xylose and maltose by potassium iodate in aqueous alkaline medium.
    Singh AK; Srivastava S; Srivastava J; Singh R
    Carbohydr Res; 2007 Jun; 342(8):1078-90. PubMed ID: 17359954
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efficient disproportionation of formic acid to methanol using molecular ruthenium catalysts.
    Savourey S; Lefèvre G; Berthet JC; Thuéry P; Genre C; Cantat T
    Angew Chem Int Ed Engl; 2014 Sep; 53(39):10466-70. PubMed ID: 25088282
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Picolinamide-Based Iridium Catalysts for Dehydrogenation of Formic Acid in Water: Effect of Amide N Substituent on Activity and Stability.
    Kanega R; Onishi N; Wang L; Murata K; Muckerman JT; Fujita E; Himeda Y
    Chemistry; 2018 Dec; 24(69):18389-18392. PubMed ID: 29493841
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Water-Soluble Iridium-NHC-Phosphine Complexes as Catalysts for Chemical Hydrogen Batteries Based on Formate.
    Horváth H; Papp G; Szabolcsi R; Kathó Á; Joó F
    ChemSusChem; 2015 Sep; 8(18):3036-8. PubMed ID: 26289830
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The catalytic mechanism of kynureninase from Pseudomonas fluorescens: insights from the effects of pH and isotopic substitution on steady-state and pre-steady-state kinetics.
    Koushik SV; Moore JA; Sundararaju B; Phillips RS
    Biochemistry; 1998 Feb; 37(5):1376-82. PubMed ID: 9477966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.