These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 28771921)

  • 1. Design and Synthesis of Powerful Capsule Catalysts Aimed at Applications in C1 Chemistry and Biomass Conversion.
    Bao J; Tsubaki N
    Chem Rec; 2018 Jan; 18(1):4-19. PubMed ID: 28771921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple-functional capsule catalysts: a tailor-made confined reaction environment for the direct synthesis of middle isoparaffins from syngas.
    He J; Liu Z; Yoneyama Y; Nishiyama N; Tsubaki N
    Chemistry; 2006 Nov; 12(32):8296-304. PubMed ID: 16850512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confinement effect and synergistic function of H-ZSM-5/Cu-ZnO-Al2O3 capsule catalyst for one-step controlled synthesis.
    Yang G; Tsubaki N; Shamoto J; Yoneyama Y; Zhang Y
    J Am Chem Soc; 2010 Jun; 132(23):8129-36. PubMed ID: 20481614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clever Nanomaterials Fabrication Techniques Encounter Sustainable C1 Catalysis.
    Wang Y; Sun J; Tsubaki N
    Acc Chem Res; 2023 Sep; 56(17):2341-2353. PubMed ID: 37579494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxide-Zeolite-Based Composite Catalyst Concept That Enables Syngas Chemistry beyond Fischer-Tropsch Synthesis.
    Pan X; Jiao F; Miao D; Bao X
    Chem Rev; 2021 Jun; 121(11):6588-6609. PubMed ID: 34032417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a core-shell catalyst: an effective strategy for suppressing side reactions in syngas for direct selective conversion to light olefins.
    Tan L; Wang F; Zhang P; Suzuki Y; Wu Y; Chen J; Yang G; Tsubaki N
    Chem Sci; 2020 Mar; 11(16):4097-4105. PubMed ID: 34122875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile synthesis of H-type zeolite shell on a silica substrate for tandem catalysis.
    Yang G; Wang D; Yoneyama Y; Tan Y; Tsubaki N
    Chem Commun (Camb); 2012 Jan; 48(9):1263-5. PubMed ID: 22179791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing a capsule catalyst and its application for direct synthesis of middle isoparaffins.
    He J; Yoneyama Y; Xu B; Nishiyama N; Tsubaki N
    Langmuir; 2005 Mar; 21(5):1699-702. PubMed ID: 15723460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of Zeolites to C1 Chemistry: Recent Advances, Challenges, and Opportunities.
    Zhang Q; Yu J; Corma A
    Adv Mater; 2020 Nov; 32(44):e2002927. PubMed ID: 32697378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tandem Reactions over Zeolite-Based Catalysts in Syngas Conversion.
    Amoo CC; Xing C; Tsubaki N; Sun J
    ACS Cent Sci; 2022 Aug; 8(8):1047-1062. PubMed ID: 36032758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Well-Defined Core-Shell-Structured Capsule Catalyst for Direct Conversion of CO
    Li H; Zhang P; Guo L; He Y; Zeng Y; Thongkam M; Natakaranakul J; Kojima T; Reubroycharoen P; Vitidsant T; Yang G; Tsubaki N
    ChemSusChem; 2020 Apr; 13(8):2060-2065. PubMed ID: 31999391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructured catalysts for organic transformations.
    Chng LL; Erathodiyil N; Ying JY
    Acc Chem Res; 2013 Aug; 46(8):1825-37. PubMed ID: 23350747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in zeolite-encapsulated metal catalysts: A suitable catalyst design for catalytic biomass conversion.
    Limlamthong M; Yip ACK
    Bioresour Technol; 2020 Feb; 297():122488. PubMed ID: 31796381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry.
    Haibach MC; Kundu S; Brookhart M; Goldman AS
    Acc Chem Res; 2012 Jun; 45(6):947-58. PubMed ID: 22584036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis.
    Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N
    Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO
    Das S; Pérez-Ramírez J; Gong J; Dewangan N; Hidajat K; Gates BC; Kawi S
    Chem Soc Rev; 2020 May; 49(10):2937-3004. PubMed ID: 32407432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New progress in zeolite synthesis and catalysis.
    Xu H; Wu P
    Natl Sci Rev; 2022 Sep; 9(9):nwac045. PubMed ID: 36128460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Assembled Nano-Filamentous Zeolite Catalyst to Realize Efficient One-Step Ethanol Synthesis.
    Yao J; Feng X; Fan J; Komiyama S; Kugue Y; Guo X; He Y; Yang G; Tsubaki N
    Chemistry; 2022 Oct; 28(59):e202201783. PubMed ID: 35851966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring iron-based multifunctional catalysts for Fischer-Tropsch synthesis: a review.
    Abelló S; Montané D
    ChemSusChem; 2011 Nov; 4(11):1538-56. PubMed ID: 22083868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxide Nanocrystal Model Catalysts.
    Huang W
    Acc Chem Res; 2016 Mar; 49(3):520-7. PubMed ID: 26938790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.