These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 28772072)
1. A Consecutive Spray Printing Strategy to Construct and Integrate Diverse Supercapacitors on Various Substrates. Wang X; Lu Q; Chen C; Han M; Wang Q; Li H; Niu Z; Chen J ACS Appl Mater Interfaces; 2017 Aug; 9(34):28612-28619. PubMed ID: 28772072 [TBL] [Abstract][Full Text] [Related]
2. Printable Fabrication of Nanocoral-Structured Electrodes for High-Performance Flexible and Planar Supercapacitor with Artistic Design. Lin Y; Gao Y; Fan Z Adv Mater; 2017 Nov; 29(43):. PubMed ID: 28980732 [TBL] [Abstract][Full Text] [Related]
3. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. Liu L; Niu Z; Chen J Chem Soc Rev; 2016 Jul; 45(15):4340-63. PubMed ID: 27263796 [TBL] [Abstract][Full Text] [Related]
4. Fully Packaged Carbon Nanotube Supercapacitors by Direct Ink Writing on Flexible Substrates. Chen B; Jiang Y; Tang X; Pan Y; Hu S ACS Appl Mater Interfaces; 2017 Aug; 9(34):28433-28440. PubMed ID: 28782923 [TBL] [Abstract][Full Text] [Related]
5. Printable Fabrication of a Fully Integrated and Self-Powered Sensor System on Plastic Substrates. Lin Y; Chen J; Tavakoli MM; Gao Y; Zhu Y; Zhang D; Kam M; He Z; Fan Z Adv Mater; 2019 Feb; 31(5):e1804285. PubMed ID: 30520163 [TBL] [Abstract][Full Text] [Related]
6. Inkjet-Printed Electrodes on A4 Paper Substrates for Low-Cost, Disposable, and Flexible Asymmetric Supercapacitors. Sundriyal P; Bhattacharya S ACS Appl Mater Interfaces; 2017 Nov; 9(44):38507-38521. PubMed ID: 28991438 [TBL] [Abstract][Full Text] [Related]
7. Printable thin film supercapacitors using single-walled carbon nanotubes. Kaempgen M; Chan CK; Ma J; Cui Y; Gruner G Nano Lett; 2009 May; 9(5):1872-6. PubMed ID: 19348455 [TBL] [Abstract][Full Text] [Related]
8. Arbitrary-Shaped Graphene-Based Planar Sandwich Supercapacitors on One Substrate with Enhanced Flexibility and Integration. Zheng S; Tang X; Wu ZS; Tan YZ; Wang S; Sun C; Cheng HM; Bao X ACS Nano; 2017 Feb; 11(2):2171-2179. PubMed ID: 28157332 [TBL] [Abstract][Full Text] [Related]
9. Fabrication and Seamless Integration of Insensitive-Bending Fully Printed All-in-One Fabric-Based Supercapacitors Based on Cost-Effective MWCNT Electrodes. Jiang L; Hong H; Hu J; Yan X ACS Appl Mater Interfaces; 2022 Mar; 14(10):12214-12222. PubMed ID: 35234438 [TBL] [Abstract][Full Text] [Related]
10. An All-Freeze-Casting Strategy to Design Typographical Supercapacitors with Integrated Architectures. Wang Q; Wang X; Wan F; Chen K; Niu Z; Chen J Small; 2018 Jun; 14(23):e1800280. PubMed ID: 29741805 [TBL] [Abstract][Full Text] [Related]
11. Additive-free MXene inks and direct printing of micro-supercapacitors. Zhang CJ; McKeon L; Kremer MP; Park SH; Ronan O; Seral-Ascaso A; Barwich S; Coileáin CÓ; McEvoy N; Nerl HC; Anasori B; Coleman JN; Gogotsi Y; Nicolosi V Nat Commun; 2019 Apr; 10(1):1795. PubMed ID: 30996224 [TBL] [Abstract][Full Text] [Related]
12. Graphene-Based Linear Tandem Micro-Supercapacitors with Metal-Free Current Collectors and High-Voltage Output. Shi X; Wu ZS; Qin J; Zheng S; Wang S; Zhou F; Sun C; Bao X Adv Mater; 2017 Nov; 29(44):. PubMed ID: 29028132 [TBL] [Abstract][Full Text] [Related]
13. Fully Printed Ultraflexible Supercapacitor Supported by a Single-Textile Substrate. Zhang H; Qiao Y; Lu Z ACS Appl Mater Interfaces; 2016 Nov; 8(47):32317-32323. PubMed ID: 27933835 [TBL] [Abstract][Full Text] [Related]
14. A Flexible Stretchable Hydrogel Electrolyte for Healable All-in-One Configured Supercapacitors. Guo Y; Zheng K; Wan P Small; 2018 Apr; 14(14):e1704497. PubMed ID: 29484807 [TBL] [Abstract][Full Text] [Related]
15. Scalable Paper Supercapacitors for Printed Wearable Electronics. Say MG; Brett CJ; Edberg J; Roth SV; Söderberg LD; Engquist I; Berggren M ACS Appl Mater Interfaces; 2022 Dec; 14(50):55850-55863. PubMed ID: 36508553 [TBL] [Abstract][Full Text] [Related]
16. Recent Development of Printed Micro-Supercapacitors: Printable Materials, Printing Technologies, and Perspectives. Li H; Liang J Adv Mater; 2020 Jan; 32(3):e1805864. PubMed ID: 30941808 [TBL] [Abstract][Full Text] [Related]
17. Water-Transferred, Inkjet-Printed Supercapacitors toward Conformal and Epidermal Energy Storage. Giannakou P; Tas MO; Le Borgne B; Shkunov M ACS Appl Mater Interfaces; 2020 Feb; 12(7):8456-8465. PubMed ID: 31985204 [TBL] [Abstract][Full Text] [Related]
18. Transparent and flexible supercapacitors with single walled carbon nanotube thin film electrodes. Yuksel R; Sarioba Z; Cirpan A; Hiralal P; Unalan HE ACS Appl Mater Interfaces; 2014 Sep; 6(17):15434-9. PubMed ID: 25127070 [TBL] [Abstract][Full Text] [Related]
19. All-Graphene Oxide Flexible Solid-State Supercapacitors with Enhanced Electrochemical Performance. Ogata C; Kurogi R; Awaya K; Hatakeyama K; Taniguchi T; Koinuma M; Matsumoto Y ACS Appl Mater Interfaces; 2017 Aug; 9(31):26151-26160. PubMed ID: 28715632 [TBL] [Abstract][Full Text] [Related]
20. Evolution of 3D Printing Methods and Materials for Electrochemical Energy Storage. Egorov V; Gulzar U; Zhang Y; Breen S; O'Dwyer C Adv Mater; 2020 Jul; 32(29):e2000556. PubMed ID: 32510631 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]