These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 28772233)

  • 1. Functional MRI-based identification of brain regions activated by mechanical noxious stimulation and modulatory effect of remifentanil in cats.
    Nagakubo D; Hamamoto Y; Hasegawa D; Kamata M; Iizuka T; Muta K; Fujita N; Nakagawa T; Nishimura R
    Res Vet Sci; 2017 Oct; 114():444-449. PubMed ID: 28772233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining fMRI with a pharmacokinetic model to determine which brain areas activated by painful stimulation are specifically modulated by remifentanil.
    Wise RG; Rogers R; Painter D; Bantick S; Ploghaus A; Williams P; Rapeport G; Tracey I
    Neuroimage; 2002 Aug; 16(4):999-1014. PubMed ID: 12202088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of remifentanil infusion regimens on cardiovascular function and responses to noxious stimulation in propofol-anesthetized cats.
    Correa Mdo A; Aguiar AJ; Neto FJ; Mendes Gda M; Steagall PV; Lima AF
    Am J Vet Res; 2007 Sep; 68(9):932-40. PubMed ID: 17764406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging human cerebral pain modulation by dose-dependent opioid analgesia: a positron emission tomography activation study using remifentanil.
    Wagner KJ; Sprenger T; Kochs EF; Tölle TR; Valet M; Willoch F
    Anesthesiology; 2007 Mar; 106(3):548-56. PubMed ID: 17325514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered Signaling in the Descending Pain-modulatory System after Short-Term Infusion of the μ-Opioid Agonist Remifentanil.
    Sprenger C; Eichler IC; Eichler L; Zöllner C; Büchel C
    J Neurosci; 2018 Mar; 38(10):2454-2470. PubMed ID: 29440535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opioids depress cortical centers responsible for the volitional control of respiration.
    Pattinson KT; Governo RJ; MacIntosh BJ; Russell EC; Corfield DR; Tracey I; Wise RG
    J Neurosci; 2009 Jun; 29(25):8177-86. PubMed ID: 19553457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using fMRI to quantify the time dependence of remifentanil analgesia in the human brain.
    Wise RG; Williams P; Tracey I
    Neuropsychopharmacology; 2004 Mar; 29(3):626-35. PubMed ID: 14679387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute opioid effects on human brain as revealed by functional magnetic resonance imaging.
    Leppä M; Korvenoja A; Carlson S; Timonen P; Martinkauppi S; Ahonen J; Rosenberg PH; Aronen HJ; Kalso E
    Neuroimage; 2006 Jun; 31(2):661-9. PubMed ID: 16459107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional magnetic resonance imaging studies of opioid receptor-mediated modulation of noxious-evoked BOLD contrast in rats.
    Shah YB; Haynes L; Prior MJ; Marsden CA; Morris PG; Chapman V
    Psychopharmacology (Berl); 2005 Aug; 180(4):761-73. PubMed ID: 15778889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fMRI study of brain activations during non-noxious and noxious electrical stimulation of the sciatic nerve of rats.
    Chang C; Shyu BC
    Brain Res; 2001 Apr; 897(1-2):71-81. PubMed ID: 11282360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opioid suppression of conditioned anticipatory brain responses to breathlessness.
    Hayen A; Wanigasekera V; Faull OK; Campbell SF; Garry PS; Raby SJM; Robertson J; Webster R; Wise RG; Herigstad M; Pattinson KTS
    Neuroimage; 2017 Apr; 150():383-394. PubMed ID: 28062251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacological FMRI: measuring opioid effects on the BOLD response to hypercapnia.
    Pattinson KT; Rogers R; Mayhew SD; Tracey I; Wise RG
    J Cereb Blood Flow Metab; 2007 Feb; 27(2):414-23. PubMed ID: 16736039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mu-opioid receptor agonist remifentanil induces acute dysphoria irrespective of its analgesic properties.
    Wagner KJ; Valet M; Kochs EF; Kriner M; Tölle TR; Sprenger T
    J Psychopharmacol; 2010 Mar; 24(3):355-61. PubMed ID: 18801832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dose-dependent regional cerebral blood flow changes during remifentanil infusion in humans: a positron emission tomography study.
    Wagner KJ; Willoch F; Kochs EF; Siessmeier T; Tölle TR; Schwaiger M; Bartenstein P
    Anesthesiology; 2001 May; 94(5):732-9. PubMed ID: 11388521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An fMRI-based neurologic signature of physical pain.
    Wager TD; Atlas LY; Lindquist MA; Roy M; Woo CW; Kross E
    N Engl J Med; 2013 Apr; 368(15):1388-97. PubMed ID: 23574118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. fMRI of pain processing in the brain: a within-animal comparative study of BOLD vs. CBV and noxious electrical vs. noxious mechanical stimulation in rat.
    Zhao F; Welsh D; Williams M; Coimbra A; Urban MO; Hargreaves R; Evelhoch J; Williams DS
    Neuroimage; 2012 Jan; 59(2):1168-79. PubMed ID: 21856430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacokinetics of remifentanil in conscious cats and cats anesthetized with isoflurane.
    Pypendop BH; Brosnan RJ; Siao KT; Stanley SD
    Am J Vet Res; 2008 Apr; 69(4):531-6. PubMed ID: 18380586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regional intensive and temporal patterns of functional MRI activation distinguishing noxious and innocuous contact heat.
    Moulton EA; Keaser ML; Gullapalli RP; Greenspan JD
    J Neurophysiol; 2005 Apr; 93(4):2183-93. PubMed ID: 15601733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dorsal root ganglion stimulation attenuates the BOLD signal response to noxious sensory input in specific brain regions: Insights into a possible mechanism for analgesia.
    Pawela CP; Kramer JM; Hogan QH
    Neuroimage; 2017 Feb; 147():10-18. PubMed ID: 27876655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-dose remifentanil increases regional cerebral blood flow and regional cerebral blood volume, but decreases regional mean transit time and regional cerebrovascular resistance in volunteers.
    Lorenz IH; Kolbitsch C; Schocke M; Kremser C; Zschiegner F; Hinteregger M; Felber S; Hörmann C; Benzer A
    Br J Anaesth; 2000 Aug; 85(2):199-204. PubMed ID: 10992824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.