BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 28772358)

  • 1. Removal of metals from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation.
    Ye M; Li G; Yan P; Ren J; Zheng L; Han D; Sun S; Huang S; Zhong Y
    Chemosphere; 2017 Oct; 185():1189-1196. PubMed ID: 28772358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioleaching combined brine leaching of heavy metals from lead-zinc mine tailings: Transformations during the leaching process.
    Ye M; Yan P; Sun S; Han D; Xiao X; Zheng L; Huang S; Chen Y; Zhuang S
    Chemosphere; 2017 Feb; 168():1115-1125. PubMed ID: 27884516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioleaching of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria: effects of substrate concentration.
    Liu YG; Zhou M; Zeng GM; Wang X; Li X; Fan T; Xu WH
    Bioresour Technol; 2008 Jul; 99(10):4124-9. PubMed ID: 17951054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching.
    Liu YG; Zhou M; Zeng GM; Li X; Xu WH; Fan T
    J Hazard Mater; 2007 Mar; 141(1):202-8. PubMed ID: 16887262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A classical modelling of abandoned mine tailings' bioleaching by an autochthonous microbial culture.
    Medina-Díaz HL; Acosta I; Muñoz M; López Bellido FJ; Villaseñor J; Llanos J; Rodríguez L; Fernández-Morales FJ
    J Environ Manage; 2022 Dec; 323():116251. PubMed ID: 36261963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal and acidity fluxes controlled by precipitation/dissolution cycles of sulfate salts in an anthropogenic mine aquifer.
    Cánovas CR; Macías F; Pérez-López R
    J Contam Hydrol; 2016 May; 188():29-43. PubMed ID: 26972101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.
    Huang L; Li X; Nguyen TA
    PLoS One; 2015; 10(8):e0135364. PubMed ID: 26295582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acid production potentials of massive sulfide minerals and lead-zinc mine tailings: a medium-term study.
    Çelebi EE; Öncel MS; Kobya M
    Water Sci Technol; 2018 Jan; 77(1-2):260-268. PubMed ID: 29339625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vegetation successfully prevents oxidization of sulfide minerals in mine tailings.
    Li Y; Sun Q; Zhan J; Yang Y; Wang D
    J Environ Manage; 2016 Jul; 177():153-60. PubMed ID: 27093236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioleaching of ultramafic tailings by acidithiobacillus spp. for CO2 sequestration.
    Power IM; Dipple GM; Southam G
    Environ Sci Technol; 2010 Jan; 44(1):456-62. PubMed ID: 19950896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioleaching for environmental remediation of toxic metals and metalloids: A review on soils, sediments, and mine tailings.
    Nguyen TH; Won S; Ha MG; Nguyen DD; Kang HY
    Chemosphere; 2021 Nov; 282():131108. PubMed ID: 34119723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geochemical behavior and environmental risks related to the use of abandoned base-metal tailings as construction material in the upper-Moulouya district, Morocco.
    Argane R; El Adnani M; Benzaazoua M; Bouzahzah H; Khalil A; Hakkou R; Taha Y
    Environ Sci Pollut Res Int; 2016 Jan; 23(1):598-611. PubMed ID: 26330319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metals recovery from polymetallic sulfide tailings by bioleaching functional bacteria isolated with the improved 9K agar: Comparison between one-step and two-step processes.
    Hu M; Zhao X; Gu J; Qian L; Wang Z; Nie Y; Han X; An L; Jiang H
    Environ Res; 2024 Jan; 240(Pt 1):117511. PubMed ID: 37890822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The flotation tailings of the former Pb-Zn mine of Touiref (NW Tunisia): mineralogy, mine drainage prediction, base-metal speciation assessment and geochemical modeling.
    Othmani MA; Souissi F; Bouzahzah H; Bussière B; da Silva EF; Benzaazoua M
    Environ Sci Pollut Res Int; 2015 Feb; 22(4):2877-90. PubMed ID: 25220771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of heavy metals from mine tailings by in-situ bioleaching coupled to electrokinetics.
    Acosta Hernández I; Muñoz Morales M; Fernández Morales FJ; Rodríguez Romero L; Villaseñor Camacho J
    Environ Res; 2023 Dec; 238(Pt 2):117183. PubMed ID: 37769830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minimization of metal sulphides bioleaching from mine wastes into the aquatic environment.
    Piervandi Z; Khodadadi Darban A; Mousavi SM; Abdollahy M; Asadollahfardi G; Funari V; Dinelli E
    Ecotoxicol Environ Saf; 2019 Oct; 182():109443. PubMed ID: 31398782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial influence on storage and mobilisation of metals in iron-rich mine tailings from the Salobo mine, Brazil.
    Henne A; Craw D; Gagen EJ; Southam G
    Sci Total Environ; 2019 Aug; 680():91-104. PubMed ID: 31100671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinguishing reclamation, revegetation and phytoremediation, and the importance of geochemical processes in the reclamation of sulfidic mine tailings: A review.
    Xie L; van Zyl D
    Chemosphere; 2020 Aug; 252():126446. PubMed ID: 32182510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative waste residue materials for passive in situ prevention of sulfide-mine tailings oxidation: a field evaluation.
    Nason P; Johnson RH; Neuschütz C; Alakangas L; Öhlander B
    J Hazard Mater; 2014 Feb; 267():245-54. PubMed ID: 24462894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal mobilization under alkaline conditions in ash-covered tailings.
    Lu J; Alakangas L; Wanhainen C
    J Environ Manage; 2014 Jun; 139():38-49. PubMed ID: 24681363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.