BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

536 related articles for article (PubMed ID: 28772411)

  • 21. Additively manufactured porous scaffolds by design for treatment of bone defects.
    Toosi S; Javid-Naderi MJ; Tamayol A; Ebrahimzadeh MH; Yaghoubian S; Mousavi Shaegh SA
    Front Bioeng Biotechnol; 2023; 11():1252636. PubMed ID: 38312510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Review on vat photopolymerization additive manufacturing of bioactive ceramic bone scaffolds.
    Guo W; Li B; Li P; Zhao L; You H; Long Y
    J Mater Chem B; 2023 Oct; 11(40):9572-9596. PubMed ID: 37727909
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Additively manufactured biodegradable porous metals.
    Li Y; Jahr H; Zhou J; Zadpoor AA
    Acta Biomater; 2020 Oct; 115():29-50. PubMed ID: 32853809
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fatigue and dynamic biodegradation behavior of additively manufactured Mg scaffolds.
    Wang Y; Huang H; Jia G; Zeng H; Yuan G
    Acta Biomater; 2021 Nov; 135():705-722. PubMed ID: 34469790
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The status and challenges of replicating the mechanical properties of connective tissues using additive manufacturing.
    Miramini S; Fegan KL; Green NC; Espino DM; Zhang L; Thomas-Seale LEJ
    J Mech Behav Biomed Mater; 2020 Mar; 103():103544. PubMed ID: 32090944
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metal Material, Properties and Design Methods of Porous Biomedical Scaffolds for Additive Manufacturing: A Review.
    Lv Y; Wang B; Liu G; Tang Y; Lu E; Xie K; Lan C; Liu J; Qin Z; Wang L
    Front Bioeng Biotechnol; 2021; 9():641130. PubMed ID: 33842445
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental Validation and Evaluation of the Bending Properties of Additively Manufactured Metallic Cellular Scaffold Structures for Bone Tissue Engineering.
    Al-Barqawi MO; Church B; Thevamaran M; Thoma DJ; Rahman A
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629475
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Promotion of Mechanical Properties by Bone Ingrowth in Additive-Manufactured Titanium Scaffolds.
    Sun C; Dong E; Chen J; Zheng J; Kang J; Jin Z; Liu C; Wang L; Li D
    J Funct Biomater; 2022 Aug; 13(3):. PubMed ID: 36135562
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent Developments of Biomaterials for Additive Manufacturing of Bone Scaffolds.
    Chen Y; Li W; Zhang C; Wu Z; Liu J
    Adv Healthc Mater; 2020 Dec; 9(23):e2000724. PubMed ID: 32743960
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Additive manufacturing of bone scaffolds.
    Yang Y; Wang G; Liang H; Gao C; Peng S; Shen L; Shuai C
    Int J Bioprint; 2019; 5(1):148. PubMed ID: 32596528
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrated additive design and manufacturing approach for the bioengineering of bone scaffolds for favorable mechanical and biological properties.
    Valainis D; Dondl P; Foehr P; Burgkart R; Kalkhof S; Duda GN; van Griensven M; Poh PSP
    Biomed Mater; 2019 Sep; 14(6):065002. PubMed ID: 31387088
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review.
    Wang X; Xu S; Zhou S; Xu W; Leary M; Choong P; Qian M; Brandt M; Xie YM
    Biomaterials; 2016 Mar; 83():127-41. PubMed ID: 26773669
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D Printing Technologies in Metallic Implants: A Thematic Review on the Techniques and Procedures.
    Attarilar S; Ebrahimi M; Djavanroodi F; Fu Y; Wang L; Yang J
    Int J Bioprint; 2021; 7(1):306. PubMed ID: 33585711
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D Printing of Bioceramics for Bone Tissue Engineering.
    Zafar MJ; Zhu D; Zhang Z
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31618857
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advances in additive manufacturing for bone tissue engineering scaffolds.
    Moreno Madrid AP; Vrech SM; Sanchez MA; Rodriguez AP
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():631-644. PubMed ID: 30948100
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Porous Scaffold Design for Additive Manufacturing in Orthopedics: A Review.
    Chen H; Han Q; Wang C; Liu Y; Chen B; Wang J
    Front Bioeng Biotechnol; 2020; 8():609. PubMed ID: 32626698
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Additive Manufactured Magnesium-Based Scaffolds for Tissue Engineering.
    Antoniac I; Manescu Paltanea V; Paltanea G; Antoniac A; Nemoianu IV; Petrescu MI; Dura H; Bodog AD
    Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500191
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Critical Review of Additive Manufacturing Techniques and Associated Biomaterials Used in Bone Tissue Engineering.
    Wu Y; Lu Y; Zhao M; Bosiakov S; Li L
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631999
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Review: Polymeric-Based 3D Printing for Tissue Engineering.
    Wu GH; Hsu SH
    J Med Biol Eng; 2015; 35(3):285-292. PubMed ID: 26167139
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: Experimental and computational analysis.
    Barui S; Chatterjee S; Mandal S; Kumar A; Basu B
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):812-823. PubMed ID: 27770959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.