These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 28772525)

  • 1. Numerical Investigation of the Fracture Mechanism of Defective Graphene Sheets.
    Fan N; Ren Z; Jing G; Guo J; Peng B; Jiang H
    Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anomalous strength characteristics of Stone-Thrower-Wales defects in graphene sheets - a molecular dynamics study.
    Juneja A; Rajasekaran G
    Phys Chem Chem Phys; 2018 Jun; 20(22):15203-15215. PubMed ID: 29789830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoresonator vibrational behaviour analysis of single- and double-layer graphene with atomic vacancy and pinhole defects.
    Makwana M; Patel AM
    J Mol Model; 2023 Apr; 29(5):149. PubMed ID: 37074494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Practical molecular dynamic simulation of monolayer graphene with consideration of structural defects.
    Ranjbartoreh AR; Wang G
    J Nanosci Nanotechnol; 2012 Feb; 12(2):1398-401. PubMed ID: 22629965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Defects on the Mechanical and Thermal Properties of Graphene.
    Li M; Deng T; Zheng B; Zhang Y; Liao Y; Zhou H
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30832437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture.
    Xu L; Wei N; Zheng Y
    Nanotechnology; 2013 Dec; 24(50):505703. PubMed ID: 24270887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial Strengthening of Graphene/Aluminum Composites through Point Defects: A First-Principles Study.
    Zhang X; Wang S
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33804166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Tearing Conditions on the Crack Propagation in a Monolayer Graphene Sheet.
    Shi J; Yu W; Hu C; Duan H; Ji J; Kang Y; Cai K
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35742922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-Scale Molecular Simulations on the Mechanical Response and Failure Behavior of a defective Graphene: Cases of 5-8-5 Defects.
    Wang S; Yang B; Yuan J; Si Y; Chen H
    Sci Rep; 2015 Oct; 5():14957. PubMed ID: 26449655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomistic Modelling of Size-Dependent Mechanical Properties and Fracture of Pristine and Defective Cove-Edged Graphene Nanoribbons.
    Damasceno DA; Rajapakse RKNDN; Mesquita E
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32708133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of STW defects on the mechanical properties and fracture toughness of pristine and hydrogenated graphene.
    Verma A; Parashar A
    Phys Chem Chem Phys; 2017 Jun; 19(24):16023-16037. PubMed ID: 28594005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature- and Defect-Induced Uniaxial Tensile Mechanical Behaviors and the Fracture Mechanism of Two-Dimensional Silicon Germanide.
    Islam ASMJ; Akbar MS; Islam MS; Park J
    ACS Omega; 2021 Aug; 6(34):21861-21871. PubMed ID: 34497881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anisotropic bias dependent transport property of defective phosphorene layer.
    Umar Farooq M; Hashmi A; Hong J
    Sci Rep; 2015 Jul; 5():12482. PubMed ID: 26198318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties and failure mechanisms of graphene under a central load.
    Wang S; Yang B; Zhang S; Yuan J; Si Y; Chen H
    Chemphyschem; 2014 Sep; 15(13):2749-55. PubMed ID: 25044132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Knitted graphene-nanoribbon sheet: a mechanically robust structure.
    Wei N; Fan Z; Xu LQ; Zheng YP; Wang HQ; Zheng JC
    Nanoscale; 2012 Feb; 4(3):785-91. PubMed ID: 22170502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery from mechanical degradation of graphene by defect enlargement.
    Zheng B; Gu GX
    Nanotechnology; 2019 Nov; 31(8):085707. PubMed ID: 31683264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomistic study of mono/multi-atomic vacancy defects on the mechanical characterization of boron-doped graphene sheets.
    Setoodeh AR; Badjian H; Jahromi HS
    J Mol Model; 2017 Jan; 23(1):2. PubMed ID: 27924412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vacancy-Induced Thermal Transport and Tensile Mechanical Behavior of Monolayer Honeycomb BeO.
    Islam ASMJ; Islam MS; Mim NZ; Akbar MS; Hasan MS; Islam MR; Stampfl C; Park J
    ACS Omega; 2022 Feb; 7(5):4525-4537. PubMed ID: 35155944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Buckling Analysis of Vacancy-Defected Graphene Sheets by the Stochastic Finite Element Method.
    Chu L; Shi J; Ben S
    Materials (Basel); 2018 Aug; 11(9):. PubMed ID: 30150542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic-scale analysis of the physical strength and phonon transport mechanisms of monolayer β-bismuthene.
    Chowdhury EH; Rahman MH; Bose P; Jayan R; Islam MM
    Phys Chem Chem Phys; 2020 Dec; 22(48):28238-28255. PubMed ID: 33295342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.