These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 28772533)

  • 21. Effective degradation of rhodamine B by electro-Fenton process, using ferromagnetic nanoparticles loaded on modified graphite felt electrode as reusable catalyst: in neutral pH condition and without external aeration.
    Tian J; Zhao J; Olajuyin AM; Sharshar MM; Mu T; Yang M; Xing J
    Environ Sci Pollut Res Int; 2016 Aug; 23(15):15471-82. PubMed ID: 27117155
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Granular activated carbon based microbial fuel cell for simultaneous decolorization of real dye wastewater and electricity generation.
    Kalathil S; Lee J; Cho MH
    N Biotechnol; 2011 Dec; 29(1):32-7. PubMed ID: 21718812
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using single-chamber microbial fuel cells as renewable power sources of electro-Fenton reactors for organic pollutant treatment.
    Zhu X; Logan BE
    J Hazard Mater; 2013 May; 252-253():198-203. PubMed ID: 23523911
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bio-electro-Fenton system for enhanced estrogens degradation.
    Xu N; Zhang Y; Tao H; Zhou S; Zeng Y
    Bioresour Technol; 2013 Jun; 138():136-40. PubMed ID: 23612172
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Performance and microbial diversity of microbial fuel cells coupled with different cathode types during simultaneous azo dye decolorization and electricity generation.
    Hou B; Hu Y; Sun J
    Bioresour Technol; 2012 May; 111():105-10. PubMed ID: 22386629
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Influence of carboxylic carbon nanotube supported platinum catalyst on cathode oxygen reduction performance of MFC].
    Tu LX; Zhu NW; Wu PX; Li P; Wu JH
    Huan Jing Ke Xue; 2013 Apr; 34(4):1617-22. PubMed ID: 23798151
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation of cathode catalysts for efficient direct lignin fuel cells by nitrogen doping reduction of oxidized graphene with phthalocyanine iron and Kraft lignin.
    Lu Q; Tai J; Song X
    J Colloid Interface Sci; 2024 Aug; 677(Pt A):983-993. PubMed ID: 39128292
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Challenges and constraints of using oxygen cathodes in microbial fuel cells.
    Zhao F; Harnisch F; Schröder U; Scholz F; Bogdanoff P; Herrmann I
    Environ Sci Technol; 2006 Sep; 40(17):5193-9. PubMed ID: 16999088
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells.
    Huang J; Zhu N; Yang T; Zhang T; Wu P; Dang Z
    Biosens Bioelectron; 2015 Oct; 72():332-9. PubMed ID: 26002018
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous decolorization and bioelectricity generation in a dual chamber microbial fuel cell using electropolymerized-enzymatic cathode.
    Savizi IS; Kariminia HR; Bakhshian S
    Environ Sci Technol; 2012 Jun; 46(12):6584-93. PubMed ID: 22612728
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Different types of carbon nanotube-based anodes to improve microbial fuel cell performance.
    Thepsuparungsikul N; Ng TC; Lefebvre O; Ng HY
    Water Sci Technol; 2014; 69(9):1900-10. PubMed ID: 24804666
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane.
    Liu H; Logan BE
    Environ Sci Technol; 2004 Jul; 38(14):4040-6. PubMed ID: 15298217
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tubular carbon nanotube-based gas diffusion electrode removes persistent organic pollutants by a cyclic adsorption - Electro-Fenton process.
    Roth H; Gendel Y; Buzatu P; David O; Wessling M
    J Hazard Mater; 2016 Apr; 307():1-6. PubMed ID: 26775104
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study of azo dye decolorization and determination of cathode microorganism profile in air-cathode microbial fuel cells.
    Kumru M; Eren H; Catal T; Bermek H; Akarsubaşi AT
    Environ Technol; 2012 Sep; 33(16-18):2167-75. PubMed ID: 23240212
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rolling-made gas diffusion electrode with carbon nanotube for electro-Fenton degradation of acetylsalicylic acid.
    Yang H; Zhou M; Yang W; Ren G; Ma L
    Chemosphere; 2018 Sep; 206():439-446. PubMed ID: 29758501
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly efficient electro-generation of hydrogen peroxide using NCNT/NF/CNT air diffusion electrode for electro-Fenton degradation of p-nitrophenol.
    Tang Q; Wang D; Yao DM; Yang CW; Sun YC
    Water Sci Technol; 2016; 73(7):1652-8. PubMed ID: 27054737
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Study on the Properties of Vertical Carbon Nanotube Films Grown on Stainless Steel Bipolar Plates.
    Lu C; Shi F; Jin J; Peng X
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30889839
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrophoretic deposition of multi-walled carbon nanotube on a stainless steel electrode for use in sediment microbial fuel cells.
    Song TS; Peng-Xiao ; Wu XY; Zhou CC
    Appl Biochem Biotechnol; 2013 Jul; 170(5):1241-50. PubMed ID: 23657903
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon nanotube membrane stack for flow-through sequential regenerative electro-Fenton.
    Gao G; Zhang Q; Hao Z; Vecitis CD
    Environ Sci Technol; 2015 Feb; 49(4):2375-83. PubMed ID: 25602741
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving the power generation of microbial fuel cells by modifying the anode with single-wall carbon nanohorns.
    Yang J; Cheng S; Sun Y; Li C
    Biotechnol Lett; 2017 Oct; 39(10):1515-1520. PubMed ID: 28664313
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.