BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 28772557)

  • 1. BiCuSeO Thermoelectrics: An Update on Recent Progress and Perspective.
    Zhang X; Chang C; Zhou Y; Zhao LD
    Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light Element Doping and Introducing Spin Entropy: An Effective Strategy for Enhancement of Thermoelectric Properties in BiCuSeO.
    Tang J; Xu R; Zhang J; Li D; Zhou W; Li X; Wang Z; Xu F; Tang G; Chen G
    ACS Appl Mater Interfaces; 2019 May; 11(17):15543-15551. PubMed ID: 30964989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on the Targeted Improvement Mechanism of the Carrier Concentration and Mobility of BiCuSeO Ceramics.
    Wang Z; Zhao H; Luo X; Han W; Wang H; Meng L; She X; Quan A; Peng Y; Cai G; Liu Y; Tang Y; Feng B
    Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergetic Tuning of the Electrical and Thermal Transport Properties via Pb/Ag Dual Doping in BiCuSeO.
    Li F; Zheng Z; Chang Y; Ruan M; Ge Z; Chen Y; Fan P
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45737-45745. PubMed ID: 31738510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistically Optimized Electron and Phonon Transport of Polycrystalline BiCuSeO
    Yin Z; Liu Z; Yu Y; Zhang C; Chen P; Zhao J; He P; Guo X
    ACS Appl Mater Interfaces; 2021 Dec; 13(48):57638-57645. PubMed ID: 34817977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remarkable enhancement in thermoelectric performance of BiCuSeO by Cu deficiencies.
    Liu Y; Zhao LD; Liu Y; Lan J; Xu W; Li F; Zhang BP; Berardan D; Dragoe N; Lin YH; Nan CW; Li JF; Zhu H
    J Am Chem Soc; 2011 Dec; 133(50):20112-5. PubMed ID: 22084827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual Vacancies: An Effective Strategy Realizing Synergistic Optimization of Thermoelectric Property in BiCuSeO.
    Li Z; Xiao C; Fan S; Deng Y; Zhang W; Ye B; Xie Y
    J Am Chem Soc; 2015 May; 137(20):6587-93. PubMed ID: 25927811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cu
    Jiang L; Han L; Lu C; Yang S; Liu Y; Jiang H; Yan Y; Tang X; Yang D
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):11977-11984. PubMed ID: 33685121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Update Review on
    Zheng J; Wang D; Zhao LD
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Core-shell nanostructures introduce multiple potential barriers to enhance energy filtering for the improvement of the thermoelectric properties of SnTe.
    Ma Z; Wang C; Lei J; Zhang D; Chen Y; Wang Y; Wang J; Cheng Z
    Nanoscale; 2020 Jan; 12(3):1904-1911. PubMed ID: 31904055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping.
    Pei YL; Wu H; Wu D; Zheng F; He J
    J Am Chem Soc; 2014 Oct; 136(39):13902-8. PubMed ID: 25238235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient interlayer charge release for high-performance layered thermoelectrics.
    Zhu H; Li Z; Zhao C; Li X; Yang J; Xiao C; Xie Y
    Natl Sci Rev; 2021 Feb; 8(2):nwaa085. PubMed ID: 34691564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Promising Thermoelectric Bulk Materials with 2D Structures.
    Zhou Y; Zhao LD
    Adv Mater; 2017 Dec; 29(45):. PubMed ID: 28737228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Significant Optimization of Electron-Phonon Transport of n-Type Bi
    Pan L; Zhao L; Zhang X; Chen C; Yao P; Jiang C; Shen X; Lyu Y; Lu C; Zhao LD; Wang Y
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21603-21609. PubMed ID: 31185566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Power Factor and Ultralow Lattice Thermal Conductivity Induced High Thermoelectric Performance of BiCuTeO/BiCuSeO Superlattice.
    Yang X; Sun Z; Ge G; Yang J
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boosting Thermoelectric Performance via Weakening Carrier-Phonon Coupling in BiCuSeO-Graphene Composites.
    Zhou Z; Guo J; Zheng Y; Yang Y; Yang B; Li D; Zhang W; Wei B; Liu C; Lan JL; Nan CW; Lin YH
    Small Methods; 2024 Mar; ():e2301619. PubMed ID: 38488726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced photothermoelectric detection in Co:BiCuSeO crystals with tunable Seebeck effect.
    Wang F; Lv Y; Xu Y; Cao L; Chen L; Zhang C; Yao S; Xu J; Zhou J; Chen Y
    Opt Express; 2022 Feb; 30(5):8356-8365. PubMed ID: 35299578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced thermoelectric properties of Pb-doped BiCuSeO ceramics.
    Lan JL; Liu YC; Zhan B; Lin YH; Zhang B; Yuan X; Zhang W; Xu W; Nan CW
    Adv Mater; 2013 Sep; 25(36):5086-90. PubMed ID: 23897654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Thermoelectric Performance of c-Axis-Oriented Epitaxial Ba-Doped BiCuSeO Thin Films.
    Yuan D; Guo S; Hou S; Ma Y; Wang J; Wang S
    Nanoscale Res Lett; 2018 Nov; 13(1):382. PubMed ID: 30488129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superior Carrier Mobility Enabled by the Charge Channel Leads to Enhanced Thermoelectric Performance in BiCuSeO Composites.
    Yin Z; Zhang H; Wang Y; Wu Y; Xing Y; Deng L; He P; Guo X
    Small; 2023 Dec; 19(50):e2304430. PubMed ID: 37616511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.