These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 28772613)
1. Wettability and Contact Time on a Biomimetic Superhydrophobic Surface. Liang Y; Peng J; Li X; Huang J; Qiu R; Zhang Z; Ren L Materials (Basel); 2017 Mar; 10(3):. PubMed ID: 28772613 [TBL] [Abstract][Full Text] [Related]
2. Bouncing Dynamics of Impact Droplets on the Biomimetic Plane and Convex Superhydrophobic Surfaces with Dual-Level and Three-Level Structures. Lian Z; Xu J; Ren W; Wang Z; Yu H Nanomaterials (Basel); 2019 Oct; 9(11):. PubMed ID: 31731520 [TBL] [Abstract][Full Text] [Related]
3. Numerical Calculation of Apparent Contact Angles on the Hierarchical Surface with Array Microstructures by Wire Electrical Discharge Machining. Wang H; Chi G; Li L; Gong S; Zhu J; Tian C; Wang Y; Wang Z Langmuir; 2021 Feb; 37(5):1768-1778. PubMed ID: 33494604 [TBL] [Abstract][Full Text] [Related]
4. From natural to biomimetic: The superhydrophobicity and the contact time. Liang YH; Peng J; Li XJ; Xu JK; Zhang ZH; Ren LQ Microsc Res Tech; 2016 Aug; 79(8):712-20. PubMed ID: 27252147 [TBL] [Abstract][Full Text] [Related]
5. Investigation of the Influence of Machining Parameters and Surface Roughness on the Wettability of the Al6082 Surfaces Produced with WEDM. Skondras-Giousios D; Karmiris-Obratański P; Jarosz M; Markopoulos AP Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612202 [TBL] [Abstract][Full Text] [Related]
6. Superhydrophobic surfaces: From nature to biomimetic through VOF simulation. Liu C; Zhu L; Bu W; Liang Y Micron; 2018 Apr; 107():94-100. PubMed ID: 29482103 [TBL] [Abstract][Full Text] [Related]
7. Convenient and large-scale fabrication of cost-effective superhydrophobic aluminum alloy surface with excellent reparability. Cui C; Cao Y; Qi B; Wei J; Yuan J; Wang Y Langmuir; 2021 Jun; 37(25):7810-7820. PubMed ID: 34129340 [TBL] [Abstract][Full Text] [Related]
8. One-step process for superhydrophobic metallic surfaces by wire electrical discharge machining. Bae WG; Song KY; Rahmawan Y; Chu CN; Kim D; Chung do K; Suh KY ACS Appl Mater Interfaces; 2012 Jul; 4(7):3685-91. PubMed ID: 22732181 [TBL] [Abstract][Full Text] [Related]
9. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Liu M; Zheng Y; Zhai J; Jiang L Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162 [TBL] [Abstract][Full Text] [Related]
10. Exploring the Role of Habitat on the Wettability of Cicada Wings. Oh J; Dana CE; Hong S; Román JK; Jo KD; Hong JW; Nguyen J; Cropek DM; Alleyne M; Miljkovic N ACS Appl Mater Interfaces; 2017 Aug; 9(32):27173-27184. PubMed ID: 28719187 [TBL] [Abstract][Full Text] [Related]
11. Measurement Methods for Droplet Adhesion Characteristics and Micrometer-Scale Quantification of Contact Angle on Superhydrophobic Surfaces: Challenges and Opportunities. Zhang S; Zhao L; Yu M; Guo J; Liu C; Zhu C; Zhao M; Huang Y; Zheng Y Langmuir; 2024 May; 40(19):9873-9891. PubMed ID: 38695884 [TBL] [Abstract][Full Text] [Related]
12. Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf. Latthe SS; Terashima C; Nakata K; Fujishima A Molecules; 2014 Apr; 19(4):4256-83. PubMed ID: 24714190 [TBL] [Abstract][Full Text] [Related]
13. Preparation of micro/nano-structure superhydrophobic film on aluminum plates using galvanic corrosion method. Wu R; Chao GH; Jiang H; Pan A; Chen H; Yuan Z; Liu Q J Nanosci Nanotechnol; 2013 Oct; 13(10):6760-6. PubMed ID: 24245140 [TBL] [Abstract][Full Text] [Related]
14. Effect of deposition parameters on the wettability and microstructure of superhydrophobic films with hierarchical micro-nano structures. Basu BJ; Manasa J J Colloid Interface Sci; 2011 Nov; 363(2):655-62. PubMed ID: 21864844 [TBL] [Abstract][Full Text] [Related]
15. Bio-Inspired Design of Bi/Tridirectionally Anisotropic Sliding Superhydrophobic Titanium Alloy Surfaces. Xu J; Hou Y; Lian Z; Yu Z; Wang Z; Yu H Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33121077 [TBL] [Abstract][Full Text] [Related]
16. Microstructure control of the wettability and adhesion of Al alloy surfaces. Wang Y; Qin Z; Xu J; Yu H RSC Adv; 2020 Oct; 10(64):38788-38797. PubMed ID: 35518433 [TBL] [Abstract][Full Text] [Related]
17. Superhydrophobic Plant Leaves: The Variation in Surface Morphologies and Wettability during the Vegetation Period. Gou X; Guo Z Langmuir; 2019 Jan; 35(4):1047-1053. PubMed ID: 30621395 [TBL] [Abstract][Full Text] [Related]
18. A Facile Method to Prepare a Superhydrophobic Magnesium Alloy Surface. Zhu J; Jia H Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32927690 [TBL] [Abstract][Full Text] [Related]
19. The kapok petal: superhydrophobic surface induced by microscale trichomes. Chen J; Yu S; Fu T; Xu L; Tang Y; Li Z Bioinspir Biomim; 2022 Feb; 17(2):. PubMed ID: 34768250 [TBL] [Abstract][Full Text] [Related]
20. Verification of icephobic/anti-icing properties of a superhydrophobic surface. Wang Y; Xue J; Wang Q; Chen Q; Ding J ACS Appl Mater Interfaces; 2013 Apr; 5(8):3370-81. PubMed ID: 23537106 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]