BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 28772727)

  • 1. Electrodeposited Porous Mn
    Pan GT; Chong S; Yang TC; Huang CM
    Materials (Basel); 2017 Mar; 10(4):. PubMed ID: 28772727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Effective Electrodeposition Mode for Porous MnO₂/Ni Foam Composite for Asymmetric Supercapacitors.
    Tsai YC; Yang WD; Lee KC; Huang CM
    Materials (Basel); 2016 Mar; 9(4):. PubMed ID: 28773371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free-standing NiCoSe
    Ye B; Cao X; Zhao Q; Zhou A; Wang J
    Nanotechnology; 2020 Aug; 31(33):335706. PubMed ID: 32340008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors.
    Chen W; Xia C; Alshareef HN
    ACS Nano; 2014 Sep; 8(9):9531-41. PubMed ID: 25133989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nickel molybdate nanorods supported on three-dimensional, porous nickel film coated on copper wire as an advanced binder-free electrode for flexible wire-type asymmetric micro-supercapacitors with enhanced electrochemical performances.
    Naderi L; Shahrokhian S
    J Colloid Interface Sci; 2019 Apr; 542():325-338. PubMed ID: 30763900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical Mesoporous Zinc-Nickel-Cobalt Ternary Oxide Nanowire Arrays on Nickel Foam as High-Performance Electrodes for Supercapacitors.
    Wu C; Cai J; Zhang Q; Zhou X; Zhu Y; Shen PK; Zhang K
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26512-21. PubMed ID: 26575957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High performance asymmetric supercapacitors based on Ti
    Pathak M; Polaki SR; Rout CS
    RSC Adv; 2022 Mar; 12(17):10788-10799. PubMed ID: 35425026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2.
    Gao H; Xiao F; Ching CB; Duan H
    ACS Appl Mater Interfaces; 2012 May; 4(5):2801-10. PubMed ID: 22545683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrothermal growth of hierarchical Ni3S2 and Co3S4 on a reduced graphene oxide hydrogel@Ni foam: a high-energy-density aqueous asymmetric supercapacitor.
    Ghosh D; Das CK
    ACS Appl Mater Interfaces; 2015 Jan; 7(2):1122-31. PubMed ID: 25539030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Synthesis of NiCo
    Yan AL; Wang WD; Chen WQ; Wang XC; Liu F; Cheng JP
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31581488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of Cobalt-Nickel-Zinc Ternary Oxide Nanosheet and Applications for Supercapacitor Electrode.
    Wu C; Chen L; Lou X; Ding M; Jia C
    Front Chem; 2018; 6():597. PubMed ID: 30555822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Flexible and Conductive Cellulose-Mediated PEDOT:PSS/MWCNT Composite Films for Supercapacitor Electrodes.
    Zhao D; Zhang Q; Chen W; Yi X; Liu S; Wang Q; Liu Y; Li J; Li X; Yu H
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13213-13222. PubMed ID: 28349683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D hierarchical porous nitrogen-doped carbon/Ni@NiO nanocomposites self-templated by cross-linked polyacrylamide gel for high performance supercapacitor electrode.
    Li Y; Wei Q; Wang R; Zhao J; Quan Z; Zhan T; Li D; Xu J; Teng H; Hou W
    J Colloid Interface Sci; 2020 Jun; 570():286-299. PubMed ID: 32163790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of 9.6 V High-performance Asymmetric Supercapacitors Stack Based on Nickel Hexacyanoferrate-derived Ni(OH)
    Kaipannan S; Marappan S
    Sci Rep; 2019 Jan; 9(1):1104. PubMed ID: 30705312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supercapacitor Performance of Nickel-Cobalt Sulfide Nanotubes Decorated Using Ni Co-Layered Double Hydroxide Nanosheets Grown in Situ on Ni Foam.
    Xin C; Ang L; Musharavati F; Jaber F; Hui L; Zalnezhad E; Bae S; Hui KS; Hui KN
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32210107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of Electrodes with β-Nickel Hydroxide/CVD-Graphene/3D-Nickel Foam Composite Structures to Enhance the Capacitance Characteristics of Supercapacitors.
    Lu YM; Hong SH
    Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38203877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrodeposition of spinel MnCo₂O₄ nanosheets for supercapacitor applications.
    Sahoo S; Naik KK; Rout CS
    Nanotechnology; 2015 Nov; 26(45):455401. PubMed ID: 26487175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemically Stable Cobalt⁻Zinc Mixed Oxide/Hydroxide Hierarchical Porous Film Electrode for High-Performance Asymmetric Supercapacitor.
    Yang H; Zhu X; Zhu E; Lou G; Wu Y; Lu Y; Wang H; Song J; Tao Y; Pei G; Chu Q; Chen H; Ma Z; Song P; Shen Z
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30832420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Growth of Hierarchical Ni-Mn-O Solid Solution on a Flexible and Porous Ni Electrode for High-Performance All-Solid-State Asymmetric Supercapacitors.
    Yu H; Li X; Yang J; Deng Z; Yu ZZ
    Chemistry; 2019 Nov; 25(66):15131-15140. PubMed ID: 31475756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated Battery-Capacitor Electrodes: Pyridinic N-Doped Porous Carbon-Coated Abundant Oxygen Vacancy Mn-Ni-Layered Double Oxide for Hybrid Supercapacitors.
    Jiang S; Qiao Y; Fu T; Peng W; Yu T; Yang B; Xia R; Gao M
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34374-34384. PubMed ID: 34261317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.