BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28772729)

  • 1. Fabrication of Carbonate Apatite Block through a Dissolution-Precipitation Reaction Using Calcium Hydrogen Phosphate Dihydrate Block as a Precursor.
    Tsuru K; Yoshimoto A; Kanazawa M; Sugiura Y; Nakashima Y; Ishikawa K
    Materials (Basel); 2017 Mar; 10(4):. PubMed ID: 28772729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of carbonate apatite blocks fabricated from dicalcium phosphate dihydrate blocks for reconstruction of rabbit femoral and tibial defects.
    Kanazawa M; Tsuru K; Fukuda N; Sakemi Y; Nakashima Y; Ishikawa K
    J Mater Sci Mater Med; 2017 Jun; 28(6):85. PubMed ID: 28456893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of calcite blocks from gypsum blocks by compositional transformation based on dissolution-precipitation reactions in sodium carbonate solution.
    Ishikawa K; Kawachi G; Tsuru K; Yoshimoto A
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():389-393. PubMed ID: 28024601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of carbonate apatite block based on internal dissolution-precipitation reaction of dicalcium phosphate and calcium carbonate.
    Daitou F; Maruta M; Kawachi G; Tsuru K; Matsuya S; Terada Y; Ishikawa K
    Dent Mater J; 2010 May; 29(3):303-8. PubMed ID: 20448406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Fabrication of arbitrarily shaped carbonate apatite foam based on the interlocking process of dicalcium hydrogen phosphate dihydrate".
    Sugiura Y; Tsuru K; Ishikawa K
    J Mater Sci Mater Med; 2017 Aug; 28(8):122. PubMed ID: 28689353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of carbonate apatite blocks from set gypsum based on dissolution-precipitation reaction in phosphate-carbonate mixed solution.
    Nomura S; Tsuru K; Maruta M; Matsuya S; Takahashi I; Ishikawa K
    Dent Mater J; 2014; 33(2):166-72. PubMed ID: 24614998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical and Histological Comparison of Hydroxyapatite, Carbonate Apatite, and β-Tricalcium Phosphate Bone Substitutes.
    Ishikawa K; Miyamoto Y; Tsuchiya A; Hayashi K; Tsuru K; Ohe G
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30332751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and Physical Evaluation of Gelatin-Coated Carbonate Apatite Foam.
    Hara K; Fujisawa K; Nagai H; Takamaru N; Ohe G; Tsuru K; Ishikawa K; Miyamoto Y
    Materials (Basel); 2016 Aug; 9(9):. PubMed ID: 28773832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and evaluation of interconnected porous carbonate apatite from alpha tricalcium phosphate spheres.
    Ishikawa K; Arifta TI; Hayashi K; Tsuru K
    J Biomed Mater Res B Appl Biomater; 2019 Feb; 107(2):269-277. PubMed ID: 29577584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of self-setting β-TCP granular cement using β-TCP granules and sodium hydrogen sulfate solution.
    Eddy ; Tsuchiya A; Tsuru K; Ishikawa K
    J Biomater Appl; 2018 Nov; 33(5):630-636. PubMed ID: 30376757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of octacalcium phosphate block through a dissolution-precipitation reaction using a calcium sulphate hemihydrate block as a precursor.
    Sugiura Y; Munar ML; Ishikawa K
    J Mater Sci Mater Med; 2018 Sep; 29(10):151. PubMed ID: 30264167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of interconnected porous β-tricalcium phosphate (β-TCP) based on a setting reaction of β-TCP granules with HNO
    Ishikawa K; Putri TS; Tsuchiya A; Tanaka K; Tsuru K
    J Biomed Mater Res A; 2018 Mar; 106(3):797-804. PubMed ID: 29105999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of B-type carbonate apatite blocks by the phosphorization of free-molding gypsum-calcite composite.
    Zaman CT; Takeuchi A; Matsuya S; Zaman QH; Ishikawa K
    Dent Mater J; 2008 Sep; 27(5):710-5. PubMed ID: 18972788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of low-crystalline carbonate apatite foam bone replacement based on phase transformation of calcite foam.
    Maruta M; Matsuya S; Nakamura S; Ishikawa K
    Dent Mater J; 2011; 30(1):14-20. PubMed ID: 21282893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility evaluation of low-crystallinity β-tricalcium phosphate blocks as a bone substitute fabricated by a dissolution-precipitation reaction from α-tricalcium phosphate blocks.
    Tripathi G; Sugiura Y; Kareiva A; Garskaite E; Tsuru K; Ishikawa K
    J Biomater Appl; 2018 Aug; 33(2):259-270. PubMed ID: 30033849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of pH and ion components in the liquid phase on the setting reaction of carbonate apatite granules.
    Tsuchiya A; Freitas PP; Nagashima N; Ishikawa K
    Dent Mater J; 2022 Apr; 41(2):209-213. PubMed ID: 34690229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compositional changes of a dicalcium phosphate dihydrate cement after implantation in sheep.
    Bohner M; Theiss F; Apelt D; Hirsiger W; Houriet R; Rizzoli G; Gnos E; Frei C; Auer JA; von Rechenberg B
    Biomaterials; 2003 Sep; 24(20):3463-74. PubMed ID: 12809775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbonate apatite artificial bone.
    Ishikawa K; Hayashi K
    Sci Technol Adv Mater; 2021; 22(1):683-694. PubMed ID: 34434075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of hydroxyapatite block from gypsum block based on (NH4)2HPO4 treatment.
    Suzuki Y; Matsuya S; Udoh K; Nakagawa M; Tsukiyama Y; Koyano K; Ishikawa K
    Dent Mater J; 2005 Dec; 24(4):515-21. PubMed ID: 16445012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of carbonate apatite honeycomb and its tissue response.
    Ishikawa K; Munar ML; Tsuru K; Miyamoto Y
    J Biomed Mater Res A; 2019 May; 107(5):1014-1020. PubMed ID: 30706693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.