These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 28772755)

  • 1. Creep Behavior of Poly(lactic acid) Based Biocomposites.
    Morreale M; Mistretta MC; Fiore V
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Residual Tensile Property of Plain Woven Jute Fiber/Poly(Lactic Acid) Green Composites during Thermal Cycling.
    Katogi H; Takemura K; Akiyama M
    Materials (Basel); 2016 Jul; 9(7):. PubMed ID: 28773694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Stacking Sequence and Sodium Bicarbonate Treatment on Quasi-Static and Dynamic Mechanical Properties of Flax/Jute Epoxy-Based Composites.
    Fiore V; Calabrese L
    Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31027361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of 3D Printing on Jute Fabrics.
    Franco-Urquiza EA; Escamilla YR; Alcántara Llanas PI
    Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PLA Composites Reinforced with Flax and Jute Fibers-A Review of Recent Trends, Processing Parameters and Mechanical Properties.
    Sanivada UK; Mármol G; Brito FP; Fangueiro R
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33076571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Hot-Alkali Treatment on the Structure Composition of Jute Fabrics and Mechanical Properties of Laminated Composites.
    Wang X; Chang L; Shi X; Wang L
    Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31035442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manufacturing and compatibilization of binary blends of superheated steam treated jute and poly (lactic acid) biocomposites by melt-blending technique.
    Alim MA; Moniruzzaman M; Hossain MM; Wahiduzzaman ; Repon MR; Hossain I; Jalil MA
    Heliyon; 2022 Aug; 8(8):e09923. PubMed ID: 35965971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current Development and Future Perspective on Natural Jute Fibers and Their Biocomposites.
    Shahinur S; Sayeed MMA; Hasan M; Sayem ASM; Haider J; Ura S
    Polymers (Basel); 2022 Apr; 14(7):. PubMed ID: 35406319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc oxide nanostructures and stearic acid as surface modifiers for flax fabrics in polylactic acid biocomposites.
    Sbardella F; Rivilla I; Bavasso I; Russo P; Vitiello L; Tirillò J; Sarasini F
    Int J Biol Macromol; 2021 Apr; 177():495-504. PubMed ID: 33636263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural Fibres as a Sustainable Reinforcement Constituent in Aligned Discontinuous Polymer Composites Produced by the HiPerDiF Method.
    Kandemir A; Longana ML; Panzera TH; Del Pino GG; Hamerton I; Eichhorn SJ
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33920098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Reinforcement Architecture on Behavior of Flax/PLA Green Composites under Low-Velocity Impact.
    Charca S; Jiao-Wang L; Santiuste C
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New biocomposites based on bioplastic flax fibers and biodegradable polymers.
    Wróbel-Kwiatkowska M; Czemplik M; Kulma A; Zuk M; Kaczmar J; Dymińska L; Hanuza J; Ptak M; Szopa J
    Biotechnol Prog; 2012; 28(5):1336-46. PubMed ID: 22807200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation, Thermal Analysis, and Mechanical Properties of Basalt Fiber/Epoxy Composites.
    Karvanis K; Rusnáková S; Krejčí O; Žaludek M
    Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32785020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing the Fabric Architecture and Effect of γ-Radiation on the Mechanical Properties of Jute Fiber Reinforced Polyester Composites.
    Azim AYMA; Alimuzzaman S; Sarker F
    ACS Omega; 2022 Mar; 7(12):10127-10136. PubMed ID: 35382272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy Absorption Capacity in Natural Fiber Reinforcement Composites Structures.
    López-Alba E; Schmeer S; Díaz F
    Materials (Basel); 2018 Mar; 11(3):. PubMed ID: 29534003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermomechanical Behavior of Methylene Diphenyl Diisocyanate-Bonded Flax/Glass Woven Fabric Reinforced Laminated Composites.
    Hasan KMF; Horváth PG; Alpár T
    ACS Omega; 2021 Mar; 6(9):6124-6133. PubMed ID: 33718703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of lignin on the mechanical performance of polylactic acid and jute composites.
    Delgado-Aguilar M; Oliver-Ortega H; Alberto Méndez J; Camps J; Espinach FX; Mutjé P
    Int J Biol Macromol; 2018 Sep; 116():299-304. PubMed ID: 29698765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical properties of waste paper/jute fabric reinforced polyester resin matrix hybrid composites.
    Das S
    Carbohydr Polym; 2017 Sep; 172():60-67. PubMed ID: 28606548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable polyesters reinforced with surface-modified vegetable fibers.
    Zini E; Baiardo M; Armelao L; Scandola M
    Macromol Biosci; 2004 Mar; 4(3):286-95. PubMed ID: 15468219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tensile and Flexural Properties of Cement Composites Reinforced with Flax Nonwoven Fabrics.
    Claramunt J; Ventura H; Fernández-Carrasco LJ; Ardanuy M
    Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.