These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 28772763)

  • 1. A Comparison of Microscale Techniques for Determining Fracture Toughness of LiMn₂O₄ Particles.
    Mughal MZ; Amanieu HY; Moscatelli R; Sebastiani M
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sub-10-micrometer toughening and crack tip toughness of dental enamel.
    Ang SF; Schulz A; Pacher Fernandes R; Schneider GA
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):423-32. PubMed ID: 21316630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mode II Fracture Analysis of GNP/Epoxy Nanocomposite Film on a Substrate.
    Her SC; Zhang KC
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Residual micro-stress distributions in heat-pressed ceramic on zirconia and porcelain-fused to metal systems: Analysis by FIB-DIC ring-core method and correlation with fracture toughness.
    Sebastiani M; Massimi F; Merlati G; Bemporad E
    Dent Mater; 2015 Nov; 31(11):1396-405. PubMed ID: 26365988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving fracture toughness of dental nanocomposites by interface engineering and micromechanics.
    Chan KS; Lee YD; Nicolella DP; Furman BR; Wellinghoff S; Rawls HR
    Eng Fract Mech; 2007 Aug; 74(12):1857-1871. PubMed ID: 18670579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toughness and damage susceptibility in human cortical bone is proportional to mechanical inhomogeneity at the osteonal-level.
    Katsamenis OL; Jenkins T; Thurner PJ
    Bone; 2015 Jul; 76():158-68. PubMed ID: 25863123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the influence of residual stress on nano-mechanical characterization of thin coatings.
    Sebastiani M; Bemporad E; Carassiti F
    J Nanosci Nanotechnol; 2011 Oct; 11(10):8864-72. PubMed ID: 22400273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indentation techniques for evaluating the fracture toughness of biomaterials and hard tissues.
    Kruzic JJ; Kim DK; Koester KJ; Ritchie RO
    J Mech Behav Biomed Mater; 2009 Aug; 2(4):384-95. PubMed ID: 19627845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Load displacement and high speed nanoindentation data set at different state of charge (SoC) for spinel Li x Mn2O4 cathodes.
    Mughal MZ; Moscatelli R; Sebastiani M
    Data Brief; 2016 Sep; 8():203-6. PubMed ID: 27331088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate Critical Stress Intensity Factor Griffith Crack Theory Measurements by Numerical Techniques.
    Petersen RC
    Sampe J; 2013; 2013():737-752. PubMed ID: 25620817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of fracture properties of cancellous bone tissues using digital image correlation/wedge splitting test method.
    Bokam P; Germaneau A; Rigoard P; Vendeuvre T; Valle V
    J Mech Behav Biomed Mater; 2020 Feb; 102():103469. PubMed ID: 31605931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Investigation of Softening Laws and Fracture Toughness of Slag-Based Geopolymer Concrete and Mortar.
    Ding Y; Bai YL; Dai JG; Shi CJ
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33213059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tough and fatigue-resistant polymer networks by crack tip softening.
    Liu B; Yin T; Zhu J; Zhao D; Yu H; Qu S; Yang W
    Proc Natl Acad Sci U S A; 2023 Feb; 120(6):e2217781120. PubMed ID: 36716369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the Crystal Lattice Structure in Predicting Fracture Toughness.
    Nguyen T; Bonamy D
    Phys Rev Lett; 2019 Nov; 123(20):205503. PubMed ID: 31809084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fracture Toughness Estimation of Single-Crystal Aluminum at Nanoscale.
    Velilla-Díaz W; Ricardo L; Palencia A; R Zambrano H
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33803349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Re-evaluating the toughness of human cortical bone.
    Yang QD; Cox BN; Nalla RK; Ritchie RO
    Bone; 2006 Jun; 38(6):878-87. PubMed ID: 16338188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fracture modes and hybrid toughening mechanisms in oscillated/twisted plywood structure.
    Song Z; Ni Y; Cai S
    Acta Biomater; 2019 Jun; 91():284-293. PubMed ID: 31028909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of accelerated aging on the fracture toughness of zirconias.
    Harada K; Shinya A; Gomi H; Hatano Y; Shinya A; Raigrodski AJ
    J Prosthet Dent; 2016 Feb; 115(2):215-23. PubMed ID: 26548887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface toughness of silicon nitride bioceramics: I, Raman spectroscopy-assisted micromechanics.
    Pezzotti G; Enomoto Y; Zhu W; Boffelli M; Marin E; McEntire BJ
    J Mech Behav Biomed Mater; 2016 Feb; 54():328-45. PubMed ID: 26522613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relative fracture toughness of bis-acryl interim resin materials.
    Knobloch LA; Kerby RE; Pulido T; Johnston WM
    J Prosthet Dent; 2011 Aug; 106(2):118-25. PubMed ID: 21821166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.