These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 28772774)

  • 1. Grain Boundary Character Dependence on Nucleation of Discontinuous Precipitates in Cu-Ti Alloys.
    Semboshi S; Sato M; Kaneno Y; Iwase A; Takasugi T
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improve sensitization and corrosion resistance of an Al-Mg alloy by optimization of grain boundaries.
    Yan J; Heckman NM; Velasco L; Hodge AM
    Sci Rep; 2016 May; 6():26870. PubMed ID: 27230299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precipitation Behavior during Aging Operations in an Ultrafine-Grained Al-Cu-Mg Alloy Produced by High-Strain-Rate Processing.
    Zhang L; Luo H
    Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of Grain Boundary Character Distribution in B10 Alloy from Friction Stir Processing to Annealing Treatment.
    Feng W; Zhou J; Wang S; Sun T; Zhao T; Jiang Y
    Materials (Basel); 2024 Feb; 17(5):. PubMed ID: 38473605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-hardening behaviors and grain boundary discontinuous precipitation in a Pd-free gold alloy for porcelain bonding.
    Shiraishi T; Ohta M
    J Mater Sci Mater Med; 2002 Oct; 13(10):979-83. PubMed ID: 15348193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cavitation-resistant intergranular precipitates enhance creep performance of
    Rakhmonov JU; Bahl S; Shyam A; Dunand DC
    Acta Mater; 2022 Apr; 228():. PubMed ID: 36439291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A correlation between grain boundary character and deformation twin nucleation mechanism in coarse-grained high-Mn austenitic steel.
    Hung CY; Bai Y; Shimokawa T; Tsuji N; Murayama M
    Sci Rep; 2021 Apr; 11(1):8468. PubMed ID: 33875690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The microstructure and creep behavior of cold rolled udimet 188 sheet.
    Boehlert CJ; Longanbach SC
    Microsc Microanal; 2011 Jun; 17(3):350-61. PubMed ID: 21205424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of automated crystallography for transmission electron microscopy in the study of grain-boundary segregation.
    Li C; Williams DB
    Micron; 2003; 34(3-5):199-209. PubMed ID: 12895491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Correlative Study of Interfacial Segregation in a Cu-Doped TiNiSn Thermoelectric half-Heusler Alloy.
    Halpin JE; Jenkins B; Moody MP; Webster RWH; Bos JG; Bagot PAJ; MacLaren DA
    ACS Appl Electron Mater; 2022 Sep; 4(9):4446-4454. PubMed ID: 36185076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grain boundary character distribution of nanocrystalline Cu thin films using stereological analysis of transmission electron microscope orientation maps.
    Darbal AD; Ganesh KJ; Liu X; Lee SB; Ledonne J; Sun T; Yao B; Warren AP; Rohrer GS; Rollett AD; Ferreira PJ; Coffey KR; Barmak K
    Microsc Microanal; 2013 Feb; 19(1):111-9. PubMed ID: 23380005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low angle boundary migration of shot-peened pure nickel investigated by electron channeling contrast imaging and electron backscatter diffraction.
    Oh JS; Cha HW; Kim TH; Shin K; Yang CW
    Microsc Res Tech; 2019 Jun; 82(6):849-855. PubMed ID: 30689247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructures and Mechanical Properties of Al-Zn-Mg-Cu Alloys under Multi-Directional Severe Strain and Aging.
    Wei C; Lei Z; Du S; Chen R; Yin Y; Niu C; Xu Z
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Sc and Zr Additions on Recrystallization Behavior and Intergranular Corrosion Resistance of Al-Zn-Mg-Cu Alloys.
    Xia P; Wang S; Huang H; Zhou N; Song D; Jia Y
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-specific atomic scale analysis of solute segregation to a coincidence site lattice grain boundary.
    Taheri ML; Sebastian JT; Reed BW; Seidman DN; Rollett AD
    Ultramicroscopy; 2010 Mar; 110(4):278-84. PubMed ID: 20097006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study on the age-hardenable silver alloy (3 rd report). III. On the ageing process of dental Ag-Pd-Cu-Au alloy (author's transl)].
    Ota M; Hisatsune K; Yamane M
    Shika Rikogaku Zasshi; 1975 May; 16(35):144-9. PubMed ID: 1058263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precipitation induced room temperature superplasticity in Zn-Cu alloys.
    Mostaed E; Ardakani MS; Sikora-Jasinska M; Drelich JW
    Mater Lett; 2019 Jun; 244():203-206. PubMed ID: 31871366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grain boundary character distributions in Ni-16Cr-9Fe using selected area channeling patterns: methodology and results.
    Crawford DC; Was GS
    J Electron Microsc Tech; 1991 Nov; 19(3):345-60. PubMed ID: 1795187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grain Boundary Evolution of Cellular Nanostructured Sm-Co Permanent Magnets.
    Zhang W; Chen H; Song X; Ma T
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data related to the growth of σ-phase precipitates in CrMnFeCoNi high-entropy alloys: Temporal evolutions of precipitate dimensions and concentration profiles at interfaces.
    Laplanche G
    Data Brief; 2020 Dec; 33():106449. PubMed ID: 33163597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.