These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 28772777)
1. Thermoelectric Transport in Nanocomposites. Liu B; Hu J; Zhou J; Yang R Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772777 [TBL] [Abstract][Full Text] [Related]
2. Giant Thermoelectric Efficiency of Single-Filled Skutterudite Nanocomposites: Role of Interface Carrier Filtering. Trivedi V; Tiadi M; Murty BS; Satapathy DK; Battabyal M; Gopalan R ACS Appl Mater Interfaces; 2022 Nov; 14(45):51084-51095. PubMed ID: 36314554 [TBL] [Abstract][Full Text] [Related]
3. Concerted Rattling in CsAg5 Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance. Lin H; Tan G; Shen JN; Hao S; Wu LM; Calta N; Malliakas C; Wang S; Uher C; Wolverton C; Kanatzidis MG Angew Chem Int Ed Engl; 2016 Sep; 55(38):11431-6. PubMed ID: 27513458 [TBL] [Abstract][Full Text] [Related]
4. Enhanced thermoelectric properties in bulk nanowire heterostructure-based nanocomposites through minority carrier blocking. Yang H; Bahk JH; Day T; Mohammed AM; Snyder GJ; Shakouri A; Wu Y Nano Lett; 2015 Feb; 15(2):1349-55. PubMed ID: 25574778 [TBL] [Abstract][Full Text] [Related]
5. Chemistry in Advancing Thermoelectric GeTe Materials. Hong M; Chen ZG Acc Chem Res; 2022 Nov; 55(21):3178-3190. PubMed ID: 36223096 [TBL] [Abstract][Full Text] [Related]
6. Size-Controlled Au-Cu Jin Y; Hwang J; Han MK; Shon W; Rhyee JS; Kim SJ ACS Appl Mater Interfaces; 2020 Aug; 12(32):36589-36599. PubMed ID: 32667768 [TBL] [Abstract][Full Text] [Related]
7. Chiral Twist Interface Modulation Enhances Thermoelectric Properties of Tellurium Crystal. Abbey S; Jang H; Frimpong B; Nguyen VQ; Park JH; Park SD; Cho S; Jung YS; Hong KH; Oh MW Adv Sci (Weinh); 2024 Sep; 11(35):e2402147. PubMed ID: 39041948 [TBL] [Abstract][Full Text] [Related]
8. Gigantic Phonon-Scattering Cross Section To Enhance Thermoelectric Performance in Bulk Crystals. Hwang J; Kim H; Han MK; Hong J; Shim JH; Tak JY; Lim YS; Jin Y; Kim J; Park H; Lee DK; Bahk JH; Kim SJ; Kim W ACS Nano; 2019 Jul; 13(7):8347-8355. PubMed ID: 31260259 [TBL] [Abstract][Full Text] [Related]
10. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides. Rhyee JS; Kim JH Materials (Basel); 2015 Mar; 8(3):1283-1324. PubMed ID: 28788002 [TBL] [Abstract][Full Text] [Related]
11. Defect Engineering Boosted Ultrahigh Thermoelectric Power Conversion Efficiency in Polycrystalline SnSe. Karthikeyan V; Oo SL; Surjadi JU; Li X; Theja VCS; Kannan V; Lau SC; Lu Y; Lam KH; Roy VAL ACS Appl Mater Interfaces; 2021 Dec; 13(49):58701-58711. PubMed ID: 34851624 [TBL] [Abstract][Full Text] [Related]
12. Decouple electronic and phononic transport in nanotwinned structures: a new strategy for enhancing the figure-of-merit of thermoelectrics. Zhou Y; Gong X; Xu B; Hu M Nanoscale; 2017 Jul; 9(28):9987-9996. PubMed ID: 28681894 [TBL] [Abstract][Full Text] [Related]
13. Enhanced thermoelectric performance of β-Zn4Sb3 based nanocomposites through combined effects of density of states resonance and carrier energy filtering. Zou T; Qin X; Zhang Y; Li X; Zeng Z; Li D; Zhang J; Xin H; Xie W; Weidenkaff A Sci Rep; 2015 Dec; 5():17803. PubMed ID: 26666813 [TBL] [Abstract][Full Text] [Related]
14. Improved Cao J; Tan XY; Jia N; Lan D; Solco SFD; Chen K; Chien SW; Liu H; Tan CKI; Zhu Q; Xu J; Yan Q; Suwardi A Nanoscale; 2022 Jan; 14(2):410-418. PubMed ID: 34929726 [TBL] [Abstract][Full Text] [Related]
15. High Thermoelectric Performance in SnTe Nanocomposites with All-Scale Hierarchical Structures. Jiang Q; Hu H; Yang J; Xin J; Li S; Viola G; Yan H ACS Appl Mater Interfaces; 2020 May; 12(20):23102-23109. PubMed ID: 32338496 [TBL] [Abstract][Full Text] [Related]
16. Superparamagnetic enhancement of thermoelectric performance. Zhao W; Liu Z; Sun Z; Zhang Q; Wei P; Mu X; Zhou H; Li C; Ma S; He D; Ji P; Zhu W; Nie X; Su X; Tang X; Shen B; Dong X; Yang J; Liu Y; Shi J Nature; 2017 Sep; 549(7671):247-251. PubMed ID: 28905895 [TBL] [Abstract][Full Text] [Related]
17. Thermoelectric performance of ZrNX (X = Cl, Br and I) monolayers. Shi W; Ge N; Wang X; Wang Z Phys Chem Chem Phys; 2021 Dec; 24(1):560-567. PubMed ID: 34904983 [TBL] [Abstract][Full Text] [Related]
18. Theoretical model for predicting thermoelectric properties of tin chalcogenides. Gupta R; Kumar N; Kaur P; Bera C Phys Chem Chem Phys; 2020 Sep; 22(34):18989-19008. PubMed ID: 32812596 [TBL] [Abstract][Full Text] [Related]
19. Tuning phonon transport spectrum for better thermoelectric materials. Hori T; Shiomi J Sci Technol Adv Mater; 2019; 20(1):10-25. PubMed ID: 31001366 [TBL] [Abstract][Full Text] [Related]
20. High performance Na-doped PbTe-PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures. Girard SN; He J; Zhou X; Shoemaker D; Jaworski CM; Uher C; Dravid VP; Heremans JP; Kanatzidis MG J Am Chem Soc; 2011 Oct; 133(41):16588-97. PubMed ID: 21902270 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]