BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

470 related articles for article (PubMed ID: 28772777)

  • 21. Ultrahigh Average Thermoelectric Figure of Merit, Low Lattice Thermal Conductivity and Enhanced Microhardness in Nanostructured (GeTe)
    Samanta M; Roychowdhury S; Ghatak J; Perumal S; Biswas K
    Chemistry; 2017 Jun; 23(31):7438-7443. PubMed ID: 28436062
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Achieving High Thermoelectric Figure of Merit in Polycrystalline SnSe via Introducing Sn Vacancies.
    Wei W; Chang C; Yang T; Liu J; Tang H; Zhang J; Li Y; Xu F; Zhang Z; Li JF; Tang G
    J Am Chem Soc; 2018 Jan; 140(1):499-505. PubMed ID: 29243922
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving the thermoelectric figure of merit.
    Goldsmid HJ
    Sci Technol Adv Mater; 2021 Apr; 22(1):280-284. PubMed ID: 33907527
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Defect Engineering Boosted Ultrahigh Thermoelectric Power Conversion Efficiency in Polycrystalline SnSe.
    Karthikeyan V; Oo SL; Surjadi JU; Li X; Theja VCS; Kannan V; Lau SC; Lu Y; Lam KH; Roy VAL
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58701-58711. PubMed ID: 34851624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved
    Cao J; Tan XY; Jia N; Lan D; Solco SFD; Chen K; Chien SW; Liu H; Tan CKI; Zhu Q; Xu J; Yan Q; Suwardi A
    Nanoscale; 2022 Jan; 14(2):410-418. PubMed ID: 34929726
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermoelectric performance of ZrNX (X = Cl, Br and I) monolayers.
    Shi W; Ge N; Wang X; Wang Z
    Phys Chem Chem Phys; 2021 Dec; 24(1):560-567. PubMed ID: 34904983
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys.
    Poudel B; Hao Q; Ma Y; Lan Y; Minnich A; Yu B; Yan X; Wang D; Muto A; Vashaee D; Chen X; Liu J; Dresselhaus MS; Chen G; Ren Z
    Science; 2008 May; 320(5876):634-8. PubMed ID: 18356488
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced Thermoelectric Performance in the Ba
    Ghosh S; Shankar G; Karati A; Werbach K; Rogl G; Rogl P; Bauer E; Murty BS; Suwas S; Mallik RC
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48729-48740. PubMed ID: 33073561
    [TBL] [Abstract][Full Text] [Related]  

  • 29. N-Type Bismuth Telluride Nanocomposite Materials Optimization for Thermoelectric Generators in Wearable Applications.
    Nozariasbmarz A; Krasinski JS; Vashaee D
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31083307
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synergetic effect of Zn substitution on the electron and phonon transport in Mg2Si0.5Sn0.5-based thermoelectric materials.
    Gao H; Zhu T; Zhao X; Deng Y
    Dalton Trans; 2014 Oct; 43(37):14072-8. PubMed ID: 25118956
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials.
    Fu C; Bai S; Liu Y; Tang Y; Chen L; Zhao X; Zhu T
    Nat Commun; 2015 Sep; 6():8144. PubMed ID: 26330371
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Achieving High Thermoelectric Performance in p-Type BST/PbSe Nanocomposites through the Scattering Engineering Strategy.
    Jiang Z; Ming H; Qin X; Feng D; Zhang J; Song C; Li D; Xin H; Li J; He J
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46181-46189. PubMed ID: 32997486
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High Thermoelectric Performance of In
    Yin X; Liu JY; Chen L; Wu LM
    Acc Chem Res; 2018 Feb; 51(2):240-247. PubMed ID: 29313668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stacking Fault-Induced Minimized Lattice Thermal Conductivity in the High-Performance GeTe-Based Thermoelectric Materials upon Bi
    Li J; Xie Y; Zhang C; Ma K; Liu F; Ao W; Li Y; Zhang C
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20064-20072. PubMed ID: 31091077
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermal Transport Driven by Extraneous Nanoparticles and Phase Segregation in Nanostructured Mg2(Si,Sn) and Estimation of Optimum Thermoelectric Performance.
    Tazebay AS; Yi SI; Lee JK; Kim H; Bahk JH; Kim SL; Park SD; Lee HS; Shakouri A; Yu C
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7003-12. PubMed ID: 26915474
    [TBL] [Abstract][Full Text] [Related]  

  • 36. One-step chemical synthesis of ZnO/graphene oxide molecular hybrids for high-temperature thermoelectric applications.
    Chen D; Zhao Y; Chen Y; Wang B; Chen H; Zhou J; Liang Z
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3224-30. PubMed ID: 25607423
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strained endotaxial nanostructures with high thermoelectric figure of merit.
    Biswas K; He J; Zhang Q; Wang G; Uher C; Dravid VP; Kanatzidis MG
    Nat Chem; 2011 Feb; 3(2):160-6. PubMed ID: 21258390
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Boosting Thermoelectric Performance in Nanocrystalline Ternary Skutterudite Thin Films through Metallic CoTe
    Jarwal B; Abbas S; Chou TL; Vailyaveettil SM; Kumar A; Quadir S; Ho TT; Wong DP; Chen LC; Chen KH
    ACS Appl Mater Interfaces; 2024 Mar; 16(12):14770-14780. PubMed ID: 38489232
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling thermoelectric transport in organic materials.
    Wang D; Shi W; Chen J; Xi J; Shuai Z
    Phys Chem Chem Phys; 2012 Dec; 14(48):16505-20. PubMed ID: 23086525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electron-phonon scattering effect on the lattice thermal conductivity of silicon nanostructures.
    Fu B; Tang G; Li Y
    Phys Chem Chem Phys; 2017 Nov; 19(42):28517-28526. PubMed ID: 28902205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.