These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28772796)

  • 1. Mechanics of Pickering Drops Probed by Electric Field-Induced Stress.
    Mikkelsen A; Dommersnes P; Rozynek Z; Gholamipour-Shirazi A; Carvalho MDS; Fossum JO
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle-covered drops in electric fields: drop deformation and surface particle organization.
    Mikkelsen A; Khobaib K; Eriksen FK; Måløy KJ; Rozynek Z
    Soft Matter; 2018 Jul; 14(26):5442-5451. PubMed ID: 29901062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric-field-induced deformation, yielding, and crumpling of jammed particle shells formed on non-spherical Pickering droplets.
    Khobaib K; Mikkelsen A; Vincent-Dospital T; Rozynek Z
    Soft Matter; 2021 May; 17(19):5006-5017. PubMed ID: 33908579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Destabilization of Pickering emulsions using external electric fields.
    Hwang K; Singh P; Aubry N
    Electrophoresis; 2010 Mar; 31(5):850-9. PubMed ID: 20191547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deformation of Emulsion Droplet with Clean and Particle-Covered Interface under an Electric Field.
    Abbasi MS; Farooq H; Ali H; Kazim AH; Nazir R; Shabbir A; Cho S; Song R; Lee J
    Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32635514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient formation of oil-in-oil Pickering emulsions with narrow size distributions by using electric fields.
    Rozynek Z; Bielas R; Józefczak A
    Soft Matter; 2018 Jun; 14(24):5140-5149. PubMed ID: 29881858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrorotation of particle-coated droplets: from fundamentals to applications.
    Rozynek Z; Banaszak J; Mikkelsen A; Khobaib K; Magdziarz A
    Soft Matter; 2021 Apr; 17(16):4413-4425. PubMed ID: 33908583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrohydrodynamics of a viscous drop with inertia.
    Nganguia H; Young YN; Layton AT; Lai MC; Hu WF
    Phys Rev E; 2016 May; 93(5):053114. PubMed ID: 27300985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Destabilising Pickering emulsions by drop flocculation and adhesion.
    Whitby CP; Khairul Anwar H; Hughes J
    J Colloid Interface Sci; 2016 Mar; 465():158-64. PubMed ID: 26674231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled jamming of particle-laden interfaces using a spinning drop tensiometer.
    Cheng HL; Velankar SS
    Langmuir; 2009 Apr; 25(8):4412-20. PubMed ID: 19275131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of dispersion pH on the formation and stability of Pickering emulsions stabilized by layered double hydroxides particles.
    Yang F; Niu Q; Lan Q; Sun D
    J Colloid Interface Sci; 2007 Feb; 306(2):285-95. PubMed ID: 17113594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous particle desorption and "Gorgon" drop formation from particle-armored oil drops upon cooling.
    Cholakova D; Valkova Z; Tcholakova S; Denkov N; Binks BP
    Soft Matter; 2020 Mar; 16(10):2480-2496. PubMed ID: 32068204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colloidal stability dictates drop breakup under electric fields.
    Lanauze JA; Sengupta R; Bleier BJ; Yezer BA; Khair AS; Walker LM
    Soft Matter; 2018 Nov; 14(46):9351-9360. PubMed ID: 30457153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Destabilizing Pickering emulsions using fumed silica particles with different wettabilities.
    Griffith C; Daigle H
    J Colloid Interface Sci; 2019 Jul; 547():117-126. PubMed ID: 30952073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emulsions stabilised by whey protein microgel particles: towards food-grade Pickering emulsions.
    Destribats M; Rouvet M; Gehin-Delval C; Schmitt C; Binks BP
    Soft Matter; 2014 Sep; 10(36):6941-54. PubMed ID: 24675994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle-covered droplet and a particle shell under compressive electric stress.
    Khobaib K; Hornowski T; Rozynek Z
    Phys Rev E; 2021 Jun; 103(6-1):062605. PubMed ID: 34271657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrohydrodynamic assembly of colloidal particles on a drop interface.
    Hu Y; Vlahovska PM; Miksis MJ
    Math Biosci Eng; 2021 Mar; 18(3):2357-2371. PubMed ID: 33892549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oil-in-water Pickering emulsion destabilisation at low particle concentrations.
    Juárez JA; Whitby CP
    J Colloid Interface Sci; 2012 Feb; 368(1):319-25. PubMed ID: 22169235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Particle self-assembly at ionic liquid-based interfaces.
    Frost DS; Nofen EM; Dai LL
    Adv Colloid Interface Sci; 2014 Apr; 206():92-105. PubMed ID: 24230971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavior of charged and uncharged drops in high alternating tangential electric fields.
    Löwe JM; Hinrichsen V; Roisman IV; Tropea C
    Phys Rev E; 2020 Feb; 101(2-1):023102. PubMed ID: 32168636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.