These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
471 related articles for article (PubMed ID: 28772806)
1. Thermophysical Characterization of MgCl₂·6H₂O, Xylitol and Erythritol as Phase Change Materials (PCM) for Latent Heat Thermal Energy Storage (LHTES). Höhlein S; König-Haagen A; Brüggemann D Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772806 [TBL] [Abstract][Full Text] [Related]
2. Characterization of MgCl₂·6H₂O-Based Eutectic/Expanded Perlite Composite Phase Change Material with Low Thermal Conductivity. Zhang C; Zhang Z; Ye R; Gao X; Ling Z Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30477279 [TBL] [Abstract][Full Text] [Related]
3. Macro-Encapsulation of Inorganic Phase-Change Materials (PCM) in Metal Capsules. Höhlein S; König-Haagen A; Brüggemann D Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30227668 [TBL] [Abstract][Full Text] [Related]
4. Compounding MgCl₂·6H₂O with NH₄Al(SO₄)₂·12H₂O or KAl(SO₄)₂·12H₂O to Obtain Binary Hydrated Salts as High-Performance Phase Change Materials. Sun W; Zhou Y; Feng J; Fang X; Ling Z; Zhang Z Molecules; 2019 Jan; 24(2):. PubMed ID: 30669591 [TBL] [Abstract][Full Text] [Related]
5. Experimental Investigation on Graphene Oxide/SrCl₂·6H₂O Modified CaCl₂·6H₂O and the Resulting Thermal Performances. Jin Z; Tian Y; Xu X; Cui H; Tang W; Yun Y; Sun G Materials (Basel); 2018 Aug; 11(9):. PubMed ID: 30135408 [TBL] [Abstract][Full Text] [Related]
6. Preparation and Supercooling Modification of Salt Hydrate Phase Change Materials Based on CaCl₂·2H₂O/CaCl₂. Xu X; Dong Z; Memon SA; Bao X; Cui H Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773051 [TBL] [Abstract][Full Text] [Related]
7. Enhancing thermal energy storage properties of blend phase change materials using beeswax. Belgacem SB; Trigui A; Jedidi I; Loukil MS; Calmunger M; Abdmouleh M Environ Sci Pollut Res Int; 2024 Aug; 31(39):51504-51520. PubMed ID: 39112900 [TBL] [Abstract][Full Text] [Related]
8. Use of cellulose nanofibril (CNF)/silver nanoparticles (AgNPs) composite in salt hydrate phase change material for efficient thermal energy storage. Shen Z; Oh K; Kwon S; Toivakka M; Lee HL Int J Biol Macromol; 2021 Mar; 174():402-412. PubMed ID: 33529630 [TBL] [Abstract][Full Text] [Related]
9. Characterization and Reliability of Caprylic Acid-Stearyl Alcohol Binary Mixture as Phase Change Material for a Cold Energy Storage System. Ayaz H; Chinnasamy V; Cho H Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885573 [TBL] [Abstract][Full Text] [Related]
10. Pioneering heat transfer enhancements in latent thermal energy storage: Passive and active strategies unveiled. Rahman MA; Zairov R; Akylbekov N; Zhapparbergenov R; Hasnain SMM Heliyon; 2024 Oct; 10(19):e37981. PubMed ID: 39381105 [TBL] [Abstract][Full Text] [Related]
11. Thermal Characterization of Medium-Temperature Phase Change Materials (PCMs) for Thermal Energy Storage Using the T-History Method. Rolka P; Kwidzinski R; Przybylinski T; Tomaszewski A Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885526 [TBL] [Abstract][Full Text] [Related]
12. Thermal Properties and the Prospects of Thermal Energy Storage of Mg-25%Cu-15%Zn Eutectic Alloy as Phase Change Material. Sun Z; Li L; Cheng X; Zhu J; Li Y; Zhou W Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34203586 [TBL] [Abstract][Full Text] [Related]
13. Novel Sugar Alcohol/Carbonized Kapok Fiber Composites as Form-Stable Phase-Change Materials with Exceptionally High Latent Heat for Thermal Energy Storage. An J; Liang W; Mu P; Wang C; Chen T; Zhu Z; Sun H; Li A ACS Omega; 2019 Mar; 4(3):4848-4855. PubMed ID: 31459669 [TBL] [Abstract][Full Text] [Related]
14. Fabrication, Structure, and Thermal Properties of Mg-Cu Alloys as High Temperature PCM for Thermal Energy Storage. Sun Z; Zou L; Cheng X; Zhu J; Li Y; Zhou W Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361439 [TBL] [Abstract][Full Text] [Related]
15. Characterization of Fatty Acids as Biobased Organic Materials for Latent Heat Storage. Duquesne M; Mailhé C; Doppiu S; Dauvergne JL; Santos-Moreno S; Godin A; Fleury G; Rouault F; Palomo Del Barrio E Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443227 [TBL] [Abstract][Full Text] [Related]
16. Spatiotemporal Utilization of Latent Heat in Erythritol-based Phase Change Materials as Solar Thermal Fuels. Chen J; Kou Y; Zhang S; Zhang X; Liu H; Yan H; Shi Q Angew Chem Int Ed Engl; 2024 Apr; 63(16):e202400759. PubMed ID: 38375575 [TBL] [Abstract][Full Text] [Related]
17. Performance enhancement of a thermal energy storage system using shape-stabilized LDPE/hexadecane/SEBS composite PCMs by copper oxide addition. Trigui A; Abdelmouleh M; Boudaya C RSC Adv; 2022 Aug; 12(34):21990-22003. PubMed ID: 36043091 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of carbonized waste tire for development of novel shape stabilized composite phase change material for thermal energy storage. Sarı A; Saleh TA; Hekimoğlu G; Tuzen M; Tyagi VV Waste Manag; 2020 Feb; 103():352-360. PubMed ID: 31923842 [TBL] [Abstract][Full Text] [Related]
19. Phase Change Process in a Zigzag Plate Latent Heat Storage System during Melting and Solidification. Mahani RB; Mohammed HI; Mahdi JM; Alamshahi F; Ghalambaz M; Talebizadehsardari P; Yaïci W Molecules; 2020 Oct; 25(20):. PubMed ID: 33053792 [TBL] [Abstract][Full Text] [Related]
20. A Review of Thermal Property Enhancements of Low-Temperature Nano-Enhanced Phase Change Materials. Williams JD; Peterson GP Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34685017 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]