These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28772814)

  • 1. High Thermal Dissipation of Al Heat Sink When Inserting Ceramic Powders by Ultrasonic Mechanical Coating and Armoring.
    Tsai WY; Huang GR; Wang KK; Chen CF; Huang JC
    Materials (Basel); 2017 Apr; 10(5):. PubMed ID: 28772814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Surface Microstructure on the Heat Dissipation Performance of Heat Sinks Used in Electronic Devices.
    You Y; Zhang B; Tao S; Liang Z; Tang B; Zhou R; Yuan D
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33806561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of thermal dissipation by adding graphene materials to surface coating of LED lighting module.
    Kim S; Jeong JY; Han SH; Kim JH; Kwon KT; Hwang MK; Kim IT; Cho GS
    J Nanosci Nanotechnol; 2013 May; 13(5):3554-8. PubMed ID: 23858901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Ambient Temperature on Radiative and Convective Heat Dissipation Ratio in Polymer Heat Sinks.
    Kominek J; Zachar M; Guzej M; Bartuli E; Kotrbacek P
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of the Heat-Dissipating Performance of Powder Coating with Graphene.
    Kung F; Yang MC
    Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32531901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of Heat Dissipation by Laser Micro Structuring for LED Module.
    Lu L; Zhang Z; Guan Y; Zheng H
    Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal Radiative Copper Oxide Layer for Enhancing Heat Dissipation of Metal Surface.
    Park J; Kim D; Kim H; Lee J; Chung W
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of an Auxiliary Plate on Passive Heat Dissipation of Carbon Nanotube-Based Materials.
    Yu W; Duan Z; Zhang G; Liu C; Fan S
    Nano Lett; 2018 Mar; 18(3):1770-1776. PubMed ID: 29481093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Surfactants on Graphene Dispersion and Thermal Performance for Heat Dissipation Coating.
    Cheng C; Shi WH; Teng TP; Yang CR
    Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of Melt Flow Direction during Injection Molding on Polymer Heat Sinks' Cooling Efficiency.
    Guzej M; Zachar M; Kominek J; Kotrbacek P; Brachna R
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33917050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat dissipation performance of a high-brightness LED package assembly using high-thermal conductivity filler.
    Yung KC; Liem H; Choy HS
    Appl Opt; 2013 Dec; 52(35):8484-93. PubMed ID: 24513891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An instrument for evaluation of performance of heat dissipative coatings.
    Suryawanshi CN; Kim T; Lin CT
    Rev Sci Instrum; 2010 Mar; 81(3):035105. PubMed ID: 20370211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the Heat-Dissipation Efficiency in Ultrasonic Transducers via Embedding Vertically Oriented Graphene-Based Porcelain Radiators.
    Shan J; Wang S; Zhou F; Cui L; Zhang Y; Liu Z
    Nano Lett; 2020 Jul; 20(7):5097-5105. PubMed ID: 32492341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Al₂O₃-Cu Substrate with Co-Continuous Phases Made by Powder Sintering Process.
    Wang S; Lan H; Wang W; Liu G; Zhang D
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30127239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Heat Dissipation Performance of Automotive LED Lamps Using Graphene Coatings.
    Teng TP; Chen WJ; Chang CH
    Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of high heat resistant coatings by using gas tunnel type plasma spraying.
    Kobayashi A; Ando Y; Kurokawa K
    J Nanosci Nanotechnol; 2012 Jun; 12(6):5106-10. PubMed ID: 22905586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boosting the Heat Dissipation Performance of Graphene/Polyimide Flexible Carbon Film via Enhanced Through-Plane Conductivity of 3D Hybridized Structure.
    Li Y; Zhu Y; Jiang G; Cano ZP; Yang J; Wang J; Liu J; Chen X; Chen Z
    Small; 2020 Feb; 16(8):e1903315. PubMed ID: 31999051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monolayer graphene dispersion and radiative cooling for high power LED.
    Hsiao TJ; Eyassu T; Henderson K; Kim T; Lin CT
    Nanotechnology; 2013 Oct; 24(39):395401. PubMed ID: 24008305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired radiative cooling coating with high emittance and robust self-cleaning for sustainably efficient heat dissipation.
    Li Y; Song Y; Zu H; Zhang F; Yang H; Dai W; Meng J; Jiang L
    Exploration (Beijing); 2024 Jun; 4(3):20230085. PubMed ID: 38939859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental studies on the cooling and heating performance of a highly emissive coating.
    Yang Z; Yang Z; Zhang Z; Cai Y; Wang X; Li Y; Zhang R; Zhang Y; Liu L; Zhang W; Xu L; Wang P
    Heliyon; 2024 Oct; 10(19):e38233. PubMed ID: 39397909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.