These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 28772829)

  • 1. Modeling Time-Dependent Behavior of Concrete Affected by Alkali Silica Reaction in Variable Environmental Conditions.
    Alnaggar M; Di Luzio G; Cusatis G
    Materials (Basel); 2017 Apr; 10(5):. PubMed ID: 28772829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High resolution transmission soft X-ray microscopy of deterioration products developed in large concrete dams.
    Kurtis KE; Monteiro PJ; Brown JT; Meyer-Ilse W
    J Microsc; 1999 Dec; 196 (Pt 3)():288-98. PubMed ID: 10594769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Laboratory-Accelerated Aging Methods to Study Alkali-Silica Reaction and Reinforcement Corrosion on the Properties of Concrete.
    Attar A; Gencturk B; Aryan H; Wei J
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32717936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling of Coupled Shrinkage and Creep in Multiphase Formulations for Hardening Concrete.
    Gamnitzer P; Brugger A; Drexel M; Hofstetter G
    Materials (Basel); 2019 May; 12(11):. PubMed ID: 31146386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Computational Study of the Shear Behavior of Reinforced Concrete Beams Affected from Alkali-Silica Reactivity Damage.
    Gencturk B; Aryan H; Hanifehzadeh M; Chambreuil C; Wei J
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34204312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Review on Alkali-Silica Reaction Evolution in Recycled Aggregate Concrete.
    Barreto Santos M; De Brito J; Santos Silva A
    Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32526866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alkali Release from Aggregates in Long-Service Concrete Structures: Laboratory Test Evaluation and ASR Prediction.
    Berra M; Mangialardi T; Paolini AE
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30096924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lattice Modeling of Early-Age Behavior of Structural Concrete.
    Pan Y; Prado A; Porras R; Hafez OM; Bolander JE
    Materials (Basel); 2017 Feb; 10(3):. PubMed ID: 28772590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of Tensile Creep of a Normal Strength Overlay Concrete.
    Drexel M; Theiner Y; Hofstetter G
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29895764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and numerical modeling of creep in different types of concrete.
    Harinadha Reddy D; Ramaswamy A
    Heliyon; 2018 Jul; 4(7):e00698. PubMed ID: 30094368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling Shrinkage and Creep for Concrete with Graphene Oxide Nanosheets.
    Chen Z; Xu Y; Hua J; Zhou X; Wang X; Huang L
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31561593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plastic shrinkage cracking and bleeding of concrete prepared with alkali activated cement.
    Matalkah F; Jaradat Y; Soroushian P
    Heliyon; 2019 Apr; 5(4):e01514. PubMed ID: 31025019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nano-scale structure and mechanical properties of ASR products under saturated and dry conditions.
    Wu H; Pan J; Wang J
    Sci Rep; 2020 Jun; 10(1):9187. PubMed ID: 32514085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical Evaluation of CEB-FIP 2010 Model for Concrete Creep and Shrinkage.
    Pan Z; Zhang H; Zeng B; Wang Y
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical behavior and phase change of alkali-silica reaction products under hydrostatic compression.
    Geng G; Shi Z; Leemann A; Glazyrin K; Kleppe A; Daisenberger D; Churakov S; Lothenbach B; Wieland E; Dähn R
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2020 Aug; 76(Pt 4):674-682. PubMed ID: 32831286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upscaling Cement Paste Microstructure to Obtain the Fracture, Shear, and Elastic Concrete Mechanical LDPM Parameters.
    Sherzer G; Gao P; Schlangen E; Ye G; Gal E
    Materials (Basel); 2017 Feb; 10(3):. PubMed ID: 28772605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring of Ion Mobility in the Cement Matrix to Establish Sensitivity to the ASR Caused by External Sources.
    Marko M; Hrubý P; Janča M; Kříkala J; Hajzler J; Šoukal F; Vojtíšek J; Doležal M
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quartzite Mining Waste: Diagnosis of ASR Alkali-Silica Reaction in Mortars and Portland Cement Concrete.
    Francklin I; Ribeiro RP; Corrêa FA
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Microstructure Simulation of Reactive Aggregate in Concrete from 2D Images as the Basis for ASR Simulation.
    Qiu X; Chen J; Deprez M; Cnudde V; Ye G; De Schutter G
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34071472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tensile Creep Model of Slab Concrete Based on Microprestress-Solidification Theory.
    Zhao Z; Zhang H; Fang B; Sun Y; Zhong Y; Shi T
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32679830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.