These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 28772906)

  • 1. A Comparison Study of Machine Learning Based Algorithms for Fatigue Crack Growth Calculation.
    Wang H; Zhang W; Sun F; Zhang W
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Artificial Neural Network-Based Algorithm for Evaluation of Fatigue Crack Propagation Considering Nonlinear Damage Accumulation.
    Zhang W; Bao Z; Jiang S; He J
    Materials (Basel); 2016 Jun; 9(6):. PubMed ID: 28773606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Fatigue Life Prediction Method Based on Strain Intensity Factor.
    Zhang W; Liu H; Wang Q; He J
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncertainty Modeling of Fatigue Crack Growth and Probabilistic Life Prediction for Welded Joints of Nuclear Stainless Steel.
    Chang H; Shen M; Yang X; Hou J
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32708921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue Life Prediction Based on Crack Closure and Equivalent Initial Flaw Size.
    Wang Q; Zhang W; Jiang S
    Materials (Basel); 2015 Oct; 8(10):7145-7160. PubMed ID: 28793625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Extreme Learning Machine Classification Model for e-Nose Application Based on the Multiple Kernel Approach.
    Jian Y; Huang D; Yan J; Lu K; Huang Y; Wen T; Zeng T; Zhong S; Xie Q
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28629202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Baseline-free estimation of residual fatigue life using a third order acoustic nonlinear parameter.
    Amura M; Meo M; Amerini F
    J Acoust Soc Am; 2011 Oct; 130(4):1829-37. PubMed ID: 21973336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical Analysis of Fatigue Crack Growth Path and Life Predictions for Linear Elastic Material.
    Alshoaibi AM; Fageehi YA
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors.
    Heddam S; Kisi O
    Environ Sci Pollut Res Int; 2017 Jul; 24(20):16702-16724. PubMed ID: 28560629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of a New, Energy-Based Δ
    Lesiuk G
    Materials (Basel); 2019 Feb; 12(3):. PubMed ID: 30744085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of Corrosive Fatigue Life of Submarine Pipelines of API 5L X56 Steel Materials.
    Gao X; Shao Y; Xie L; Wang Y; Yang D
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30925744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spoken language identification based on the enhanced self-adjusting extreme learning machine approach.
    Albadr MAA; Tiun S; Al-Dhief FT; Sammour MAM
    PLoS One; 2018; 13(4):e0194770. PubMed ID: 29672546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study on machine learning based algorithms for prediction of motorcycle crash severity.
    Wahab L; Jiang H
    PLoS One; 2019; 14(4):e0214966. PubMed ID: 30947250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive Finite Element Modeling of Linear Elastic Fatigue Crack Growth.
    Alshoaibi AM; Bashiri AH
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suitability Analysis of Machine Learning Algorithms for Crack Growth Prediction Based on Dynamic Response Data.
    Omar I; Khan M; Starr A
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Training Deep Neural Networks with Novel Metaheuristic Algorithms for Fatigue Crack Growth Prediction in Aluminum Aircraft Alloys.
    Zafar MH; Younis HB; Mansoor M; Moosavi SKR; Khan NM; Akhtar N
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Crack Propagation Method for Pipelines with Interacting Corrosion and Crack Defects.
    Xie M; Wang Y; Xiong W; Zhao J; Pei X
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigative Method for Fatigue Crack Propagation Based on a Small Time Scale.
    Wang H; Zhang W; Zhang J; Dai W; Zhao Y
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29751621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stacked ensemble extreme learning machine coupled with Partial Least Squares-based weighting strategy for nonlinear multivariate calibration.
    Shan P; Zhao Y; Wang Q; Sha X; Lv X; Peng S; Ying Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 May; 215():97-111. PubMed ID: 30822738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical Failure Analysis and Fatigue Life Prediction of Shield Machine Cutterhead.
    Li J; Zhang Z; Liu C; Su K; Guo J
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34500912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.