These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 28772910)

  • 1. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications.
    Lasfargues M; Stead G; Amjad M; Ding Y; Wen D
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and Characterization of Molten Salt Nanofluids for Thermal Energy Storage Application in Concentrated Solar Power Plants-Mechanistic Understanding of Specific Heat Capacity Enhancement.
    Ma B; Shin D; Banerjee D
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33207602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications.
    Lasfargues M; Bell A; Ding Y
    J Nanopart Res; 2016; 18():150. PubMed ID: 27358585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal properties analysis and thermal cycling of HITEC molten salt with h-BN nanoparticles for CSP thermal energy storage applications.
    Suraparaju SK; Aljaerani HA; Samykano M; Kadirgama K; Noor MM; Natarajan SK
    Environ Sci Pollut Res Int; 2024 Aug; 31(38):50166-50178. PubMed ID: 38625473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Wide-Working-Temperature NaNO
    Wang H; Li J; Zhong Y; Liu X; Wang M
    Molecules; 2024 May; 29(10):. PubMed ID: 38792189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increment of specific heat capacity of solar salt with SiO2 nanoparticles.
    Andreu-Cabedo P; Mondragon R; Hernandez L; Martinez-Cuenca R; Cabedo L; Julia JE
    Nanoscale Res Lett; 2014; 9(1):582. PubMed ID: 25346648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermostatic properties of nitrate molten salts and their solar and eutectic mixtures.
    D'Aguanno B; Karthik M; Grace AN; Floris A
    Sci Rep; 2018 Jul; 8(1):10485. PubMed ID: 29992980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in Molten Salt-Based Nanofluids as Thermal Energy Storage in Concentrated Solar Power: A Comprehensive Review.
    Abir FM; Altwarah Q; Rana MT; Shin D
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the relationship between the specific heat enhancement of salt-based nanofluids and the ionic exchange capacity of nanoparticles.
    Mondragón R; Juliá JE; Cabedo L; Navarrete N
    Sci Rep; 2018 May; 8(1):7532. PubMed ID: 29760478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and characterization of a quaternary nitrate based molten salt heat transfer fluid for concentrated solar power plant.
    Kwasi-Effah CC; Egware HO; Obanor AI; Ighodaro OO
    Heliyon; 2023 May; 9(5):e16096. PubMed ID: 37215795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of In Situ Synthesis of MgO Nanoparticles on the Thermal Properties of Ternary Nitrate.
    Tong Z; Li L; Li Y; Wang Q; Cheng X
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage.
    Chieruzzi M; Cerritelli GF; Miliozzi A; Kenny JM
    Nanoscale Res Lett; 2013 Oct; 8(1):448. PubMed ID: 24168168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the specific heat capacity of HITEC-salt nanocomposites for concentrated solar power applications.
    Parida DR; Basu S
    RSC Adv; 2023 Feb; 13(8):5496-5508. PubMed ID: 36798611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidating the Transition of 3D Morphological Evolution of Binary Alloys in Molten Salts with Metal Ion Additives.
    Liu X; Bawane KK; Clark C; Peng Y; Woods ME; Halstenberg P; Xiao X; Lee WK; Ma L; Ehrlich S; Dai S; Thornton K; Ge M; Gakhar R; He L; Chen-Wiegart YK
    ACS Appl Mater Interfaces; 2024 Aug; 16(34):45606-45618. PubMed ID: 39150963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of Graphite-Dispersed Li
    Karim MA; Islam M; Arthur O; Yarlagadda PK
    Molecules; 2020 Jan; 25(2):. PubMed ID: 31963280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal Energy Storage and Heat Transfer of Nano-Enhanced Phase Change Material (NePCM) in a Shell and Tube Thermal Energy Storage (TES) Unit with a Partial Layer of Eccentric Copper Foam.
    Ghalambaz M; Mehryan SAM; Ayoubloo KA; Hajjar A; El Kadri M; Younis O; Pour MS; Hulme-Smith C
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33803388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical Dispersion of Nanoparticles and Its Effect on the Specific Heat Capacity of Impure Binary Nitrate Salt Mixtures.
    Lasfargues M; Geng Q; Cao H; Ding Y
    Nanomaterials (Basel); 2015 Jun; 5(3):1136-1146. PubMed ID: 28347056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A solar-thermal energy harvesting scheme: enhanced heat capacity of molten HITEC salt mixed with Sn/SiO(x) core-shell nanoparticles.
    Lai CC; Chang WC; Hu WL; Wang ZM; Lu MC; Chueh YL
    Nanoscale; 2014 May; 6(9):4555-9. PubMed ID: 24675904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of a New Design of Molten Salt-to-CO
    Montes MJ; Linares JI; Barbero R; Moratilla BY
    Entropy (Basel); 2020 Aug; 22(8):. PubMed ID: 33286653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of Molten Nitrate Thermal Properties by Reduced Graphene Oxide and Graphene Quantum Dots.
    Hamdy E; Saad L; Abulfotuh F; Soliman M; Ebrahim S
    ACS Omega; 2020 Sep; 5(34):21345-21354. PubMed ID: 32905410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.