These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 28772929)

  • 1. Bearing Fault Detection Based on Empirical Wavelet Transform and Correlated Kurtosis by Acoustic Emission.
    Gao Z; Lin J; Wang X; Xu X
    Materials (Basel); 2017 May; 10(6):. PubMed ID: 28772929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early Fault Diagnosis of Bearings Using an Improved Spectral Kurtosis by Maximum Correlated Kurtosis Deconvolution.
    Jia F; Lei Y; Shan H; Lin J
    Sensors (Basel); 2015 Nov; 15(11):29363-77. PubMed ID: 26610501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal Resonant Band Demodulation Based on an Improved Correlated Kurtosis and Its Application in Bearing Fault Diagnosis.
    Chen X; Zhang B; Feng F; Jiang P
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28208820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Weak Fault Feature Extraction of Rolling Bearings Based on an Improved Kurtogram.
    Chen X; Feng F; Zhang B
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27649171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-objective iterative optimization algorithm based optimal wavelet filter selection for multi-fault diagnosis of rolling element bearings.
    Ding C; Zhao M; Lin J; Jiao J
    ISA Trans; 2019 May; 88():199-215. PubMed ID: 30578001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved parameterless empirical wavelet transform for incipient fault identification of wheelset bearing.
    He Y; Zhang T; Wang H
    Rev Sci Instrum; 2023 Dec; 94(12):. PubMed ID: 38153789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Adaptive Signal Processing Method Based on Enhanced Empirical Wavelet Transform Technology.
    Zhao H; Zuo S; Hou M; Liu W; Yu L; Yang X; Deng W
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30282951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Fault Detection Method for Rolling Bearings Based on Non-Stationary Vibration Signature Analysis.
    Zhen D; Guo J; Xu Y; Zhang H; Gu F
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31527448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An enhanced rolling bearing fault detection method combining sparse code shrinkage denoising with fast spectral correlation.
    Li J; Yu Q; Wang X; Zhang Y
    ISA Trans; 2020 Jul; 102():335-346. PubMed ID: 32122637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Detection of Motor Bearing Fault with Maximal Overlap Discrete Wavelet Packet Transform and Teager Energy Adaptive Spectral Kurtosis.
    Yang DM
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of weak fault using sparse empirical wavelet transform for cyclic fault.
    Lu Y; Xie R; Liang SY
    Int J Adv Manuf Technol; 2018 Nov; 99(5-8):1195-1201. PubMed ID: 31182897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Negentropy Spectrum Decomposition and Its Application in Compound Fault Diagnosis of Rolling Bearing.
    Xu Y; Chen J; Ma C; Zhang K; Cao J
    Entropy (Basel); 2019 May; 21(5):. PubMed ID: 33267203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal Sub-Band Analysis Based on the Envelope Power Spectrum for Effective Fault Detection in Bearing under Variable, Low Speeds.
    Nguyen HN; Kim J; Kim JM
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29723996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Modified Empirical Wavelet Transform for Acoustic Emission Signal Decomposition in Structural Health Monitoring.
    Dong S; Yuan M; Wang Q; Liang Z
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29883411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-fault detection of rolling element bearings under harsh working condition using IMF-based adaptive envelope order analysis.
    Zhao M; Lin J; Xu X; Li X
    Sensors (Basel); 2014 Oct; 14(11):20320-46. PubMed ID: 25353982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compound Fault Feature Extraction of Rolling Bearing Acoustic Signals Based on AVMD-IMVO-MCKD.
    Wu S; Zhou J; Liu T
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rolling element bearing fault identification using a novel three-step adaptive and automated filtration scheme based on Gini index.
    Albezzawy MN; Nassef MG; Sawalhi N
    ISA Trans; 2020 Jun; 101():453-460. PubMed ID: 31955946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Hybrid Technique Combining Improved Cepstrum Pre-Whitening and High-Pass Filtering for Effective Bearing Fault Diagnosis Using Vibration Data.
    Kiakojouri A; Lu Z; Mirring P; Powrie H; Wang L
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved Autogram and MOMEDA method to detect weak compound fault in rolling bearings.
    Xie X; Yang Z; Zhang L; Zeng G; Wang X; Zhang P; Chen G
    Math Biosci Eng; 2022 Jul; 19(10):10424-10444. PubMed ID: 36032001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral envelope-based adaptive empirical Fourier decomposition method and its application to rolling bearing fault diagnosis.
    Zheng J; Cao S; Pan H; Ni Q
    ISA Trans; 2022 Oct; 129(Pt B):476-492. PubMed ID: 35292169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.