BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 28772933)

  • 1. Coaxial Electrospinning and Characterization of Core-Shell Structured Cellulose Nanocrystal Reinforced PMMA/PAN Composite Fibers.
    Li C; Li Q; Ni X; Liu G; Cheng W; Han G
    Materials (Basel); 2017 May; 10(6):. PubMed ID: 28772933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrospun cellulose nanocrystals/poly(methyl methacrylate) composite nanofibers: Morphology, thermal and mechanical properties.
    Ni X; Cheng W; Huan S; Wang D; Han G
    Carbohydr Polym; 2019 Feb; 206():29-37. PubMed ID: 30553325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coaxial electrospinning of composite mats comprised of core/shell poly(methyl methacrylate)/silk fibroin fibers for tissue engineering applications.
    Atila D; Hasirci V; Tezcaner A
    J Mech Behav Biomed Mater; 2022 Apr; 128():105105. PubMed ID: 35121425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-draw PAN-PMMA nanofiber reinforced and toughened Bis-GMA dental restorative composite.
    Sun W; Cai Q; Li P; Deng X; Wei Y; Xu M; Yang X
    Dent Mater; 2010 Sep; 26(9):873-80. PubMed ID: 20579722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NaF-loaded core-shell PAN-PMMA nanofibers as reinforcements for Bis-GMA/TEGDMA restorative resins.
    Cheng L; Zhou X; Zhong H; Deng X; Cai Q; Yang X
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():262-9. PubMed ID: 24268258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures.
    Zhou C; Chu R; Wu R; Wu Q
    Biomacromolecules; 2011 Jul; 12(7):2617-25. PubMed ID: 21574638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of physical properties of carbon nanofibers obtained from coaxial electrospinning of PMMA and PAN with adjustable inner/outer nozzle-ends.
    Kaerkitcha N; Chuangchote S; Sagawa T
    Nanoscale Res Lett; 2016 Dec; 11(1):186. PubMed ID: 27067734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparatively Thermal and Crystalline Study of Poly(methyl-methacrylate)/Polyacrylonitrile Hybrids: Core-Shell Hollow Fibers, Porous Fibers, and Thin Films.
    Huang J; Cao Y; Huang Z; Imbraguglio SA; Wang Z; Peng X; Guo Z
    Macromol Mater Eng; 2016 Nov; 301(11):1327-1336. PubMed ID: 29104455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fiber Alignment and Liquid Crystal Orientation of Cellulose Nanocrystals in the Electrospun Nanofibrous Mats.
    Song W; Liu D; Prempeh N; Song R
    Biomacromolecules; 2017 Oct; 18(10):3273-3279. PubMed ID: 28925690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun Poly(lactic acid)-Based Fibrous Nanocomposite Reinforced by Cellulose Nanocrystals: Impact of Fiber Uniaxial Alignment on Microstructure and Mechanical Properties.
    Huan S; Liu G; Cheng W; Han G; Bai L
    Biomacromolecules; 2018 Mar; 19(3):1037-1046. PubMed ID: 29442497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospun Nanofibers Made of Silver Nanoparticles, Cellulose Nanocrystals, and Polyacrylonitrile as Substrates for Surface-Enhanced Raman Scattering.
    Ren S; Dong L; Zhang X; Lei T; Ehrenhauser F; Song K; Li M; Sun X; Wu Q
    Materials (Basel); 2017 Jan; 10(1):. PubMed ID: 28772428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coaxial electrospun poly(methyl methacrylate)-polyacrylonitrile nanofibers: atomic force microscopy and compositional characterization.
    Zander NE; Strawhecker KE; Orlicki JA; Rawlett AM; Beebe TP
    J Phys Chem B; 2011 Nov; 115(43):12441-7. PubMed ID: 21928836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of carbon nanospheres by the pyrolysis of polyacrylonitrile-poly(methyl methacrylate) core-shell composite nanoparticles.
    Wei D; Zhang Y; Fu J
    Beilstein J Nanotechnol; 2017; 8():1897-1908. PubMed ID: 29046837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporation of poly(ethylene glycol) grafted cellulose nanocrystals in poly(lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering.
    Zhang C; Salick MR; Cordie TM; Ellingham T; Dan Y; Turng LS
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():463-471. PubMed ID: 25686973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of silica nanoparticulate-polyacrylonitrile composite and porous nanofibers.
    Ji L; Saquing C; Khan SA; Zhang X
    Nanotechnology; 2008 Feb; 19(8):085605. PubMed ID: 21730729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of emulsion droplet size on the structure of electrospun ultrafine biocomposite fibers with cellulose nanocrystals.
    Li Y; Ko FK; Hamad WY
    Biomacromolecules; 2013 Nov; 14(11):3801-7. PubMed ID: 23789830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanics of Emulsion Electrospun Porous Carbon Fibers as Building Blocks of Multifunctional Materials.
    Chen Y; Cai J; Boyd JG; Kennedy WJ; Naraghi M
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38310-38318. PubMed ID: 30360119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and Properties of Electrospun Poly (Vinyl Pyrrolidone)/Cellulose Nanocrystal/Silver Nanoparticle Composite Fibers.
    Huang S; Zhou L; Li MC; Wu Q; Kojima Y; Zhou D
    Materials (Basel); 2016 Jun; 9(7):. PubMed ID: 28773644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Core-shell structured PEO-chitosan nanofibers by coaxial electrospinning.
    Pakravan M; Heuzey MC; Ajji A
    Biomacromolecules; 2012 Feb; 13(2):412-21. PubMed ID: 22229633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of silver nanoparticles and cellulose nanocrystals on electrospun poly(lactic) acid mats: morphology, thermal properties and mechanical behavior.
    Cacciotti I; Fortunati E; Puglia D; Kenny JM; Nanni F
    Carbohydr Polym; 2014 Mar; 103():22-31. PubMed ID: 24528696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.