These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 28773001)

  • 1. Effect of Different Carbon Sources on Bacterial Nanocellulose Production and Structure Using the Low pH Resistant Strain Komagataeibacter Medellinensis.
    Molina-Ramírez C; Castro M; Osorio M; Torres-Taborda M; Gómez B; Zuluaga R; Gómez C; Gañán P; Rojas OJ; Castro C
    Materials (Basel); 2017 Jun; 10(6):. PubMed ID: 28773001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose synthesis by Komagataeibacter rhaeticus strain P 1463 isolated from Kombucha.
    Semjonovs P; Ruklisha M; Paegle L; Saka M; Treimane R; Skute M; Rozenberga L; Vikele L; Sabovics M; Cleenwerck I
    Appl Microbiol Biotechnol; 2017 Feb; 101(3):1003-1012. PubMed ID: 27678116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of alternative energy sources on bacterial cellulose characteristics produced by Komagataeibacter medellinensis.
    Molina-Ramírez C; Enciso C; Torres-Taborda M; Zuluaga R; Gañán P; Rojas OJ; Castro C
    Int J Biol Macromol; 2018 Oct; 117():735-741. PubMed ID: 29847783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial cellulose production by a strain of Komagataeibacter rhaeticus isolated from residual loquat.
    Ye J; Li J; Wang Q; Wang X; Wang S; Wang H; Xu J
    Appl Microbiol Biotechnol; 2023 Mar; 107(5-6):1551-1562. PubMed ID: 36723702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome sequence and characterization of the bcs clusters for the production of nanocellulose from the low pH resistant strain Komagataeibacter medellinensis ID13488.
    Hernández-Arriaga AM; Del Cerro C; Urbina L; Eceiza A; Corcuera MA; Retegi A; Auxiliadora Prieto M
    Microb Biotechnol; 2019 Jul; 12(4):620-632. PubMed ID: 30793484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High yield production of cellulose by a
    Thorat MN; Dastager SG
    RSC Adv; 2018 Aug; 8(52):29797-29805. PubMed ID: 35547325
    [No Abstract]   [Full Text] [Related]  

  • 7. Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus.
    Castro C; Zuluaga R; Álvarez C; Putaux JL; Caro G; Rojas OJ; Mondragon I; Gañán P
    Carbohydr Polym; 2012 Aug; 89(4):1033-7. PubMed ID: 24750910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pineapple core from the canning industrial waste for bacterial cellulose production by
    Mardawati E; Rahmah DM; Rachmadona N; Saharina E; Pertiwi TYR; Zahrad SA; Ramdhani W; Srikandace Y; Ratnaningrum D; Endah ES; Andriani D; Khoo KS; Pasaribu KM; Satoto R; Karina M
    Heliyon; 2023 Nov; 9(11):e22010. PubMed ID: 38034652
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Gomes RJ; de Sousa Faria-Tischer PC; Tischer CA; Constantino LV; de Freitas Rosa M; Chideroli RT; de Pádua Pereira U; Spinosa WA
    Food Technol Biotechnol; 2021 Dec; 59(4):432-442. PubMed ID: 35136368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved production of bacterial cellulose by Komagataeibacter europaeus employing fruit extract as carbon source.
    Tseng YS; Patel AK; Chen CW; Dong CD; Singhania RR
    J Food Sci Technol; 2023 Mar; 60(3):1054-1064. PubMed ID: 36908337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus.
    Fan X; Gao Y; He W; Hu H; Tian M; Wang K; Pan S
    Carbohydr Polym; 2016 Oct; 151():1068-1072. PubMed ID: 27474656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of bacterial cellulose using different carbon sources and culture media.
    Mohammadkazemi F; Azin M; Ashori A
    Carbohydr Polym; 2015 Mar; 117():518-523. PubMed ID: 25498666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Culture medium pH influence on Gluconacetobacter physiology: Cellulose production rate and yield enhancement in presence of multiple carbon sources.
    Yassine F; Bassil N; Flouty R; Chokr A; Samrani AE; Boiteux G; Tahchi ME
    Carbohydr Polym; 2016 Aug; 146():282-91. PubMed ID: 27112876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524.
    Mikkelsen D; Flanagan BM; Dykes GA; Gidley MJ
    J Appl Microbiol; 2009 Aug; 107(2):576-83. PubMed ID: 19302295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into Bacterial Cellulose Biosynthesis from Different Carbon Sources and the Associated Biochemical Transformation Pathways in
    Wang SS; Han YH; Chen JL; Zhang DC; Shi XX; Ye YX; Chen DL; Li M
    Polymers (Basel); 2018 Aug; 10(9):. PubMed ID: 30960888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and optimization of production of bacterial cellulose from strain CGMCC 17276 based on whole-genome analysis.
    Lu T; Gao H; Liao B; Wu J; Zhang W; Huang J; Liu M; Huang J; Chang Z; Jin M; Yi Z; Jiang D
    Carbohydr Polym; 2020 Mar; 232():115788. PubMed ID: 31952596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production and properties of bacterial cellulose by the strain Komagataeibacter xylinus B-12068.
    Volova TG; Prudnikova SV; Sukovatyi AG; Shishatskaya EI
    Appl Microbiol Biotechnol; 2018 Sep; 102(17):7417-7428. PubMed ID: 29982923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of bacterial cellulose from Komagataeibacter saccharivorans strain BC1 isolated from rotten green grapes.
    Gopu G; Govindan S
    Prep Biochem Biotechnol; 2018; 48(9):842-852. PubMed ID: 30303756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and identification of cellulose-producing strain Komagataeibacter intermedius from fermented fruit juice.
    Lin SP; Huang YH; Hsu KD; Lai YJ; Chen YK; Cheng KC
    Carbohydr Polym; 2016 Oct; 151():827-833. PubMed ID: 27474630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient bioconversion from acid hydrolysate of waste oleaginous yeast biomass after microbial oil extraction to bacterial cellulose by Komagataeibacter xylinus.
    Luo MT; Huang C; Chen XF; Huang QL; Qi GX; Tian LL; Xiong L; Li HL; Chen XD
    Prep Biochem Biotechnol; 2017 Nov; 47(10):1025-1031. PubMed ID: 28857665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.