These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 28773049)

  • 1. A Fatigue Life Prediction Method Based on Strain Intensity Factor.
    Zhang W; Liu H; Wang Q; He J
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue Life Prediction Based on Crack Closure and Equivalent Initial Flaw Size.
    Wang Q; Zhang W; Jiang S
    Materials (Basel); 2015 Oct; 8(10):7145-7160. PubMed ID: 28793625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncertainty Modeling of Fatigue Crack Growth and Probabilistic Life Prediction for Welded Joints of Nuclear Stainless Steel.
    Chang H; Shen M; Yang X; Hou J
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32708921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatigue Crack Propagation Prediction of Corroded Steel Plate Strengthened with Carbon Fiber Reinforced Polymer (CFRP) Plates.
    Li A; Wang L; Xu S
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of Corrosive Fatigue Life of Submarine Pipelines of API 5L X56 Steel Materials.
    Gao X; Shao Y; Xie L; Wang Y; Yang D
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30925744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue Crack Propagation of Corroded High-Strength Steel Wires Using the XFEM and the EIFS.
    Zhu J; Jie Z; Chen C; Zheng H; Wang W
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37445051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Artificial Neural Network-Based Algorithm for Evaluation of Fatigue Crack Propagation Considering Nonlinear Damage Accumulation.
    Zhang W; Bao Z; Jiang S; He J
    Materials (Basel); 2016 Jun; 9(6):. PubMed ID: 28773606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatigue Crack Growth Behavior of CP-Ti Cruciform Specimens with Mixed Mode I-II Crack under Biaxial Loading.
    Liu JY; Bao WJ; Zhao JY; Zhou CY
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Comparison Study of Machine Learning Based Algorithms for Fatigue Crack Growth Calculation.
    Wang H; Zhang W; Sun F; Zhang W
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corrosion-Fatigue Crack Growth in Plates: A Model Based on the Paris Law.
    Toribio J; Matos JC; González B
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatigue crack propagation behavior of ultra high molecular weight polyethylene under mixed mode conditions.
    Elbert KE; Wright TM; Rimnac CM; Klein RW; Ingraffea AR; Gunsallus K; Bartel DL
    J Biomed Mater Res; 1994 Feb; 28(2):181-7. PubMed ID: 8207029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigative Method for Fatigue Crack Propagation Based on a Small Time Scale.
    Wang H; Zhang W; Zhang J; Dai W; Zhao Y
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29751621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short Fatigue-Crack Growth from Crack-like Defects under Completely Reversed Loading Predicted Based on Cyclic R-Curve.
    Tanaka K; Akiniwa Y
    Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical Analysis of Fatigue Crack Growth Path and Life Predictions for Linear Elastic Material.
    Alshoaibi AM; Fageehi YA
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elasto-Plastic Fatigue Crack Growth Behavior of Extruded Mg Alloy with Deformation Anisotropy Due to Stress Ratio Fluctuation.
    Masuda K; Ishihara S; Oguma N; Ishiguro M; Sakamoto Y
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of the Fatigue Crack Growth in Long-Term Operated Mild Steel under Mixed-Mode (I + II, I + III) Loading Conditions.
    Lesiuk G; Smolnicki M; Rozumek D; Krechkovska H; Student O; Correia J; Mech R; De Jesus A
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31906261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatigue Crack Growth Analysis under Constant Amplitude Loading Using Finite Element Method.
    Alshoaibi AM
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of ultrasonic back-reflection intensity for predicting the onset of crack growth due to low-cycle fatigue in stainless steel under block loading.
    Islam MN; Arai Y; Araki W
    Ultrasonics; 2015 Feb; 56():354-60. PubMed ID: 25287974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interior Fracture Mechanism Analysis and Fatigue Life Prediction of Surface-Hardened Gear Steel under Axial Loading.
    Li W; Deng H; Liu P
    Materials (Basel); 2016 Oct; 9(10):. PubMed ID: 28773962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical simulation and experimental verification of fatigue crack propagation in high-strength bolts based on fracture mechanics.
    Zhang P; Li J; Zhao Y; Li J
    Sci Prog; 2023; 106(4):368504231211660. PubMed ID: 38058131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.