These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 28773115)

  • 1. Effects of Grain Size on Ultrasonic Attenuation in Type 316L Stainless Steel.
    Wan T; Naoe T; Wakui T; Futakawa M; Obayashi H; Sasa T
    Materials (Basel); 2017 Jul; 10(7):. PubMed ID: 28773115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Grain Size in 316L Stainless Steel Using the Attenuation of Rayleigh Wave Measured by Air-Coupled Transducer.
    Wang M; Bu Y; Dai Z; Zeng S
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33920355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic cavitation erosion of 316L steel weld joint in liquid Pb-Bi eutectic alloy at 550°C.
    Lei Y; Chang H; Guo X; Li T; Xiao L
    Ultrason Sonochem; 2017 Nov; 39():77-86. PubMed ID: 28733005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical Study on the Potential of Cavitation Damage in a Lead⁻Bismuth Eutectic Spallation Target.
    Wan T; Naoe T; Kogawa H; Futakawa M; Obayashi H; Sasa T
    Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30823568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the ultrasonic attenuation in anisotropic weld materials with finite element modeling and grain-scale material description.
    Lhuillier PE; Chassignole B; Oudaa M; Kerhervé SO; Rupin F; Fouquet T
    Ultrasonics; 2017 Jul; 78():40-50. PubMed ID: 28324775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of ultrasonic scattering attenuation in austenitic stainless steel welds: realistic input data for NDT numerical modeling.
    Ploix MA; Guy P; Chassignole B; Moysan J; Corneloup G; El Guerjouma R
    Ultrasonics; 2014 Sep; 54(7):1729-36. PubMed ID: 24759567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Ultrasonic Nano-Crystal Surface Modification (UNSM) on the Passivation Behavior of Aged 316L Stainless Steel.
    Kim KT; Lee JH; Kim YS
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional geometrical and topological characteristics of grains in conventional and grain boundary engineered 316L stainless steel.
    Liu T; Xia S; Zhou B; Bai Q; Rohrer GS
    Micron; 2018 Jun; 109():58-70. PubMed ID: 29665457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bending Fatigue Behavior of 316L Stainless Steel up to Very High Cycle Fatigue Regime.
    Hu Y; Chen Y; He C; Liu Y; Wang Q; Wang C
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33126746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corrosion behavior of 2205 duplex stainless steel.
    Platt JA; Guzman A; Zuccari A; Thornburg DW; Rhodes BF; Oshida Y; Moore BK
    Am J Orthod Dentofacial Orthop; 1997 Jul; 112(1):69-79. PubMed ID: 9228844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Initial Surface Scratches on the Cavitation Erosion Behavior of 316L Stainless Steel Substrates and 316L Stainless Steel Coatings.
    Lu P; Xu Z; Tian Y; Yang R; Hu K; Li H; Yin Y; Chen X
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Mechanical and Biological Performance of an Extremely Fine Nanograined 316L Stainless Steel Cell-Substrate Interface Fabricated by Ultrasonic Shot Peening.
    Yin F; Xu R; Hu S; Zhao K; Yang S; Kuang S; Li Q; Han Q
    ACS Biomater Sci Eng; 2018 May; 4(5):1609-1621. PubMed ID: 33445318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strain-Controlled Fatigue Behavior and Microevolution of 316L Stainless Steel under Cyclic Shear Path.
    Liu X; Zhang S; Bao Y; Zhang Z; Yue Z
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Method for Early Fatigue Damage Diagnosis in 316L Stainless Steel Formed by Selective Laser Melting Technology.
    Yan X; Tang X
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Corrosion and haemocompatibility of 316L stainless steel with electroplated Rh film].
    Liu J; Yang D; Liang C; Guo L; Kong L; Cai Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Jun; 18(2):169-72. PubMed ID: 11450526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue Strength Improvement of Laser-Directed Energy Deposition 316L Stainless Steel with In Situ Ultrasonic Rolling by Preliminary Investigation.
    Liu G; Su Y; Pi X; Liu D; Lin Y
    Materials (Basel); 2024 Jul; 17(15):. PubMed ID: 39124357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wetting Behavior of LBE on Corroded Candidate LFR Structural Materials of 316L, T91 and CLAM.
    Zhu H; Du X; Liu X; Yan T; Li X; Wang Y; Qi M; Tu X
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Gradient Effect on Cyclic Behavior of 316L Stainless Steel in the Ultrasonic Bending Test.
    Hu Y; Tang S; Liu Y; Li L; Wang C; Wang Q
    Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Characterization of Fatigue Damage of 316L Stainless Steel Parts Formed by Selective Laser Melting with Harmonic Generation Technique.
    Qiao R; Yan X
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radionuclide tracing based in situ corrosion and mass transport monitoring of 316L stainless steel in a molten salt closed loop.
    Wang Y; Olson AP; Falconer C; Kelleher B; Mitchell I; Zhang H; Sridharan K; Engle JW; Couet A
    Nat Commun; 2024 Apr; 15(1):3106. PubMed ID: 38600068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.