These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 28773144)

  • 1. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures.
    Yoon M; Kim G; Kim Y; Lee T; Choe G; Hwang E; Nam J
    Materials (Basel); 2017 Jul; 10(7):. PubMed ID: 28773144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Thermal Properties of Aggregates on the Mechanical Properties of High Strength Concrete under Loading and High Temperature Conditions.
    Lee T; Jeong K; Choi H
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compressive Creep and Shrinkage of High-Strength Concrete Based on Limestone Coarse Aggregate Applied to High-Rise Buildings.
    Hwang E; Kim G; Koo K; Moon H; Choe G; Suh D; Nam J
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of High Temperature on Creep Behaviour of Glazed Hollow Bead Insulation Concrete.
    Liu YS; Pang JY; Yao WJ
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32824987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of Tensile Creep of a Normal Strength Overlay Concrete.
    Drexel M; Theiner Y; Hofstetter G
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29895764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creep Deformation and Its Effect on Mechanical Properties and Microstructure of Magnesium Phosphate Cement Concrete.
    Gao Y; Qin J; Li Z; Jia X; Qian J
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical Evaluation of CEB-FIP 2010 Model for Concrete Creep and Shrinkage.
    Pan Z; Zhang H; Zeng B; Wang Y
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A DIC-Based Study on Compressive Responses of Concrete after Exposure to Elevated Temperatures.
    Xiang S; Zeng L; Zhang J; Chen J; Liu Y; Cheng G; Mo J
    Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31247915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and numerical modeling of creep in different types of concrete.
    Harinadha Reddy D; Ramaswamy A
    Heliyon; 2018 Jul; 4(7):e00698. PubMed ID: 30094368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal-Related Stress-Strain Behavior of Alkali Activated Slag Concretes under Compression.
    Zhang M; Ma Q; Chen Y; Liu Z; Zhou H
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental Study on the Mechanical Properties of Crumb Rubber Concrete after Elevated Temperature.
    Han Y; Lv Z; Bai Y; Han G; Li D
    Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental Studies on the Effect of Properties and Micro-Structure on the Creep of Concrete-Filled Steel Tubes.
    Zhang R; Ma L; Wang Q; Li J; Wang Y; Chen H; Samosvat V
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30934959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical and Microstructural Evaluations of Lightweight Aggregate Geopolymer Concrete before and after Exposed to Elevated Temperatures.
    Abdulkareem OA; Abdullah MMAB; Hussin K; Ismail KN; Binhussain M
    Materials (Basel); 2013 Oct; 6(10):4450-4461. PubMed ID: 28788339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Concrete Creep in Compression, Tension, and Bending under Drying Condition.
    Kim SG; Park YS; Lee YH
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31618842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating Ultrasonic Pulse Velocity Method for Evaluating High-Temperature Properties of Non-Sintered Hwangto-Mixed Concrete as a Cement Replacement Material.
    Kim W; Choi H; Lee T
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental study to compare the strength of concrete with different amounts of polypropylene fibers at high temperatures.
    Wang Y; Nejati F; Edalatpanah SA; Goudarzi Karim R
    Sci Rep; 2024 Apr; 14(1):8566. PubMed ID: 38609474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Manufactured Sand and Steam-Curing Temperature on the Compressive Strength of Recycled Concrete with Different Water/Binder Ratios.
    Liu X; Wang X; Zhang T; Zhu P; Liu H
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Cooling Methods on the Residual Mechanical Behavior of Fire-Exposed Concrete: An Experimental Study.
    Carvalho EFT; Silva Neto JTD; Soares Junior PRR; Maciel PS; Fransozo HL; Bezerra ACDS; Gouveia AMC
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31717731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Evaluation of Shrinkage, Creep and Prestress Losses in Lightweight Aggregate Concrete with Sintered Fly Ash.
    Szydłowski RS; Łabuzek B
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fire Performance of Heavyweight Self-Compacting Concrete and Heavyweight High Strength Concrete.
    Aslani F; Hamidi F; Ma Q
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30862065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.