These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 28773204)
1. On Identification of Critical Material Attributes for Compression Behaviour of Pharmaceutical Diluent Powders. Zhang J; Wu CY; Pan X; Wu C Materials (Basel); 2017 Jul; 10(7):. PubMed ID: 28773204 [TBL] [Abstract][Full Text] [Related]
2. An experimental investigation of temperature rise during compaction of pharmaceutical powders. Krok A; Mirtic A; Reynolds GK; Schiano S; Roberts R; Wu CY Int J Pharm; 2016 Nov; 513(1-2):97-108. PubMed ID: 27601333 [TBL] [Abstract][Full Text] [Related]
3. Studies on the influence of high-shear granulation process on the compressibility of microcrystalline cellulose. Xiao B; Zhang J; Geng L; Tang X; Wang Y; Yin T; Zhang Y; Gou J; He H Int J Pharm; 2022 Sep; 625():122075. PubMed ID: 35931395 [TBL] [Abstract][Full Text] [Related]
4. Analytical method development for powder characterization: Visualization of the critical drug loading affecting the processability of a formulation for direct compression. Hirschberg C; Sun CC; Rantanen J J Pharm Biomed Anal; 2016 Sep; 128():462-468. PubMed ID: 27368089 [TBL] [Abstract][Full Text] [Related]
5. Microcrystalline cellulose from soybean hull as an excipient in solid dosage forms: Preparation, powder characterization, and tableting properties. Alamdari NE; Aksoy B; Babu RJ; Jiang Z Int J Biol Macromol; 2024 Jun; 270(Pt 1):132298. PubMed ID: 38750863 [TBL] [Abstract][Full Text] [Related]
6. Roller compaction of different pseudopolymorphic forms of theophylline: Effect on compressibility and tablet properties. Hadzović E; Betz G; Hadzidedić S; El-Arini SK; Leuenberger H Int J Pharm; 2010 Aug; 396(1-2):53-62. PubMed ID: 20600735 [TBL] [Abstract][Full Text] [Related]
7. Application of crustacean chitin as a co-diluent in direct compression of tablets. Mir VG; Heinämäki J; Antikainen O; Sandler N; Revoredo OB; Colarte AI; Nieto OM; Yliruusi J AAPS PharmSciTech; 2010 Mar; 11(1):409-15. PubMed ID: 20238188 [TBL] [Abstract][Full Text] [Related]
8. Investigation into powder tribo-charging of pharmaceuticals. Part I: Process-induced charge via twin-screw feeding. Beretta M; Hörmann TR; Hainz P; Hsiao WK; Paudel A Int J Pharm; 2020 Dec; 591():120014. PubMed ID: 33122114 [TBL] [Abstract][Full Text] [Related]
9. [Impact of directly compressed auxiliary materials on powder property of fermented cordyceps powder]. Chen LH; Yue GC; Guan YM; Yang M; Zhu WF Zhongguo Zhong Yao Za Zhi; 2014 Jan; 39(1):65-70. PubMed ID: 24754170 [TBL] [Abstract][Full Text] [Related]
10. The influence of particle size on the application of compression and compaction models for tableting. Wünsch I; Finke JH; John E; Juhnke M; Kwade A Int J Pharm; 2021 Apr; 599():120424. PubMed ID: 33647406 [TBL] [Abstract][Full Text] [Related]
11. The Gurnham equation in characterizing the compressibility of pharmaceutical materials. Zhao J; Burt HM; Miller RA Int J Pharm; 2006 Jul; 317(2):109-13. PubMed ID: 16678985 [TBL] [Abstract][Full Text] [Related]
12. Comparative evaluations of powder and mechanical properties of low crystallinity celluloses, microcrystalline celluloses, and powdered celluloses. Kothari SH; Kumar V; Banker GS Int J Pharm; 2002 Jan; 232(1-2):69-80. PubMed ID: 11790491 [TBL] [Abstract][Full Text] [Related]
13. A material-sparing method for assessment of powder deformation characteristics using data collected during a single compression-decompression cycle. Katz JM; Roopwani R; Buckner IS J Pharm Sci; 2013 Oct; 102(10):3687-93. PubMed ID: 23897398 [TBL] [Abstract][Full Text] [Related]
14. Utility of Microcrystalline Cellulose for Improving Drug Content Uniformity in Tablet Manufacturing Using Direct Powder Compression. Nakamura S; Tanaka C; Yuasa H; Sakamoto T AAPS PharmSciTech; 2019 Mar; 20(4):151. PubMed ID: 30903317 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of a novel cellulose powder as a filler-binder for direct compression of tablets. Pesonen T; Paronen P; Puurunen T Pharm Weekbl Sci; 1989 Feb; 11(1):13-9. PubMed ID: 2710639 [TBL] [Abstract][Full Text] [Related]
16. Characterization of Tableting Speed-Dependent Deformation Properties of Active Pharmaceutical Ingredients in Powder Mixtures Using Out-of-Die Method. Mizunaga D; Koseki M; Kamemoto N; Watano S Chem Pharm Bull (Tokyo); 2021; 69(12):1184-1194. PubMed ID: 34853285 [TBL] [Abstract][Full Text] [Related]
17. Comparative evaluation of the powder properties and compression behaviour of a new cellulose-based direct compression excipient and Avicel PH-102. Reus-Medina M; Lanz M; Kumar V; Leuenberger H J Pharm Pharmacol; 2004 Aug; 56(8):951-6. PubMed ID: 15285837 [TBL] [Abstract][Full Text] [Related]
19. Influence of tabletting speed on compactibility and compressibility of two direct compressible powders under high speed compression. Ishino R; Yoshino H; Hirakawa Y; Noda K Chem Pharm Bull (Tokyo); 1990 Jul; 38(7):1987-92. PubMed ID: 2268901 [TBL] [Abstract][Full Text] [Related]
20. Effects of drying methods on the physicochemical and compressional characteristics of Okra powder and the release properties of its metronidazole tablet formulation. Bakre LG; Jaiyeoba KT Arch Pharm Res; 2009 Feb; 32(2):259-67. PubMed ID: 19280157 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]