These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 28773262)
1. Development of Hybrid Surfaces with Tunable Wettability by Selective Surface Modifications. Lee HJ; Park K Materials (Basel); 2016 Feb; 9(3):. PubMed ID: 28773262 [TBL] [Abstract][Full Text] [Related]
2. Cellulose-Based Superhydrophobic Surface Decorated with Functional Groups Showing Distinct Wetting Abilities to Manipulate Water Harvesting. Huang W; Tang X; Qiu Z; Zhu W; Wang Y; Zhu YL; Xiao Z; Wang H; Liang D; Li J; Xie Y ACS Appl Mater Interfaces; 2020 Sep; 12(36):40968-40978. PubMed ID: 32805840 [TBL] [Abstract][Full Text] [Related]
3. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. Yan YY; Gao N; Barthlott W Adv Colloid Interface Sci; 2011 Dec; 169(2):80-105. PubMed ID: 21974918 [TBL] [Abstract][Full Text] [Related]
4. Tunable wetting of polymer surfaces. Yilgor I; Bilgin S; Isik M; Yilgor E Langmuir; 2012 Oct; 28(41):14808-14. PubMed ID: 22989033 [TBL] [Abstract][Full Text] [Related]
5. Superhydrophobic surfaces from hierarchically structured wrinkled polymers. Li Y; Dai S; John J; Carter KR ACS Appl Mater Interfaces; 2013 Nov; 5(21):11066-73. PubMed ID: 24131534 [TBL] [Abstract][Full Text] [Related]
6. Effects of Engineered Wettability on the Efficiency of Dew Collection. Gerasopoulos K; Luedeman WL; Ölçeroglu E; McCarthy M; Benkoski JJ ACS Appl Mater Interfaces; 2018 Jan; 10(4):4066-4076. PubMed ID: 29297673 [TBL] [Abstract][Full Text] [Related]
7. UV-A and UV-C light induced hydrophilization of dental implants. Al Qahtani MS; Wu Y; Spintzyk S; Krieg P; Killinger A; Schweizer E; Stephan I; Scheideler L; Geis-Gerstorfer J; Rupp F Dent Mater; 2015 Aug; 31(8):e157-67. PubMed ID: 25981907 [TBL] [Abstract][Full Text] [Related]
8. Effect of deposition parameters on the wettability and microstructure of superhydrophobic films with hierarchical micro-nano structures. Basu BJ; Manasa J J Colloid Interface Sci; 2011 Nov; 363(2):655-62. PubMed ID: 21864844 [TBL] [Abstract][Full Text] [Related]
9. Analysis of Carbon Nanoparticle Coatings via Wettability. Griffo R; Di Natale F; Minale M; Sirignano M; Parisi A; Carotenuto C Nanomaterials (Basel); 2024 Feb; 14(3):. PubMed ID: 38334572 [TBL] [Abstract][Full Text] [Related]
10. Hybrid superhydrophobic/hydrophilic patterns deposited on glass by laser-induced forward transfer method for efficient water harvesting. Bakhtiari N; Azizian S; Jaleh B J Colloid Interface Sci; 2022 Nov; 625():383-396. PubMed ID: 35724461 [TBL] [Abstract][Full Text] [Related]
11. Uphill Water Transport on a Wettability-Patterned Surface: Experimental and Theoretical Results. Hirai Y; Mayama H; Matsuo Y; Shimomura M ACS Appl Mater Interfaces; 2017 May; 9(18):15814-15821. PubMed ID: 28421741 [TBL] [Abstract][Full Text] [Related]
14. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment. Synytska A; Ionov L; Grundke K; Stamm M Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778 [TBL] [Abstract][Full Text] [Related]
15. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation. Mondal B; Mac Giolla Eain M; Xu Q; Egan VM; Punch J; Lyons AM ACS Appl Mater Interfaces; 2015 Oct; 7(42):23575-88. PubMed ID: 26372672 [TBL] [Abstract][Full Text] [Related]
16. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
17. Rapid, ultraviolet-induced, reversibly switchable wettability of superhydrophobic/superhydrophilic surfaces. Pan Y; Kong W; Bhushan B; Zhao X Beilstein J Nanotechnol; 2019; 10():866-873. PubMed ID: 31165013 [TBL] [Abstract][Full Text] [Related]
18. Wettability and Contact Time on a Biomimetic Superhydrophobic Surface. Liang Y; Peng J; Li X; Huang J; Qiu R; Zhang Z; Ren L Materials (Basel); 2017 Mar; 10(3):. PubMed ID: 28772613 [TBL] [Abstract][Full Text] [Related]
19. Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity. Jung YC; Bhushan B Langmuir; 2009 Dec; 25(24):14165-73. PubMed ID: 19637877 [TBL] [Abstract][Full Text] [Related]
20. Evolution of a Superhydrophobic H59 Brass Surface by Using Laser Texturing via Post Thermal Annealing. Lu X; Kang L; Yan B; Lei T; Zheng G; Xie H; Sun J; Jiang K Micromachines (Basel); 2020 Nov; 11(12):. PubMed ID: 33260379 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]