These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 28773262)
21. Multifunctional Laser-Induced Graphene Papers with Combined Defocusing and Grafting Processes for Patternable and Continuously Tunable Wettability from Superlyophilicity to Superlyophobicity. Wang Y; Wang G; He M; Liu F; Han M; Tang T; Luo S Small; 2021 Oct; 17(42):e2103322. PubMed ID: 34523240 [TBL] [Abstract][Full Text] [Related]
22. Flexible Teflon nanocone array surfaces with tunable superhydrophobicity for self-cleaning and aqueous droplet patterning. Toma M; Loget G; Corn RM ACS Appl Mater Interfaces; 2014 Jul; 6(14):11110-7. PubMed ID: 24654844 [TBL] [Abstract][Full Text] [Related]
23. A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection. Yin K; Du H; Dong X; Wang C; Duan JA; He J Nanoscale; 2017 Oct; 9(38):14620-14626. PubMed ID: 28936519 [TBL] [Abstract][Full Text] [Related]
24. Photoresponsive superhydrophobic surfaces for effective wetting control. Pan S; Guo R; Xu W Soft Matter; 2014 Dec; 10(45):9187-92. PubMed ID: 25322263 [TBL] [Abstract][Full Text] [Related]
25. Insights into the wettability transition of nanosecond laser ablated surface under ambient air exposure. Yang Z; Liu X; Tian Y J Colloid Interface Sci; 2019 Jan; 533():268-277. PubMed ID: 30170278 [TBL] [Abstract][Full Text] [Related]
26. Instant Tuning of Superhydrophilic to Robust Superhydrophobic and Self-Cleaning Metallic Coating: Simple, Direct, One-Step, and Scalable Technique. Rahman OSA; Mukherjee B; Islam A; Keshri AK ACS Appl Mater Interfaces; 2019 Jan; 11(4):4616-4624. PubMed ID: 30608641 [TBL] [Abstract][Full Text] [Related]
27. Wetting and anti-wetting on aligned carbon nanotube films. Liu H; Zhai J; Jiang L Soft Matter; 2006 Sep; 2(10):811-821. PubMed ID: 32680273 [TBL] [Abstract][Full Text] [Related]
28. UVO-tunable superhydrophobic to superhydrophilic wetting transition on biomimetic nanostructured surfaces. Han JT; Kim S; Karim A Langmuir; 2007 Feb; 23(5):2608-14. PubMed ID: 17269808 [TBL] [Abstract][Full Text] [Related]
29. pH-Driven Wetting Switchability of Electrodeposited Superhydrophobic Copolymers of Pyrene Bearing Acid Functions and Fluorinated Chains. Ramos Chagas G; Kiryanenko D; Godeau G; Guittard F; Darmanin T Chemphyschem; 2017 Dec; 18(23):3429-3436. PubMed ID: 28856779 [TBL] [Abstract][Full Text] [Related]
30. How Different Are Fog Collection and Dew Water Harvesting on Surfaces with Different Wetting Behaviors? Nioras D; Ellinas K; Constantoudis V; Gogolides E ACS Appl Mater Interfaces; 2021 Oct; 13(40):48322-48332. PubMed ID: 34590815 [TBL] [Abstract][Full Text] [Related]
32. Application of 3D printing for fabrication of superhydrophobic surfaces with reversible wettability. Zhao W; Zhan Y; Li W; Hao S; Amirfazli A RSC Adv; 2024 May; 14(25):17684-17695. PubMed ID: 38832241 [TBL] [Abstract][Full Text] [Related]
33. Bioinspired nanoparticle spray-coating for superhydrophobic flexible materials with oil/water separation capabilities. Geraldi NR; Dodd LE; Xu BB; Wood D; Wells GG; McHale G; Newton MI Bioinspir Biomim; 2018 Feb; 13(2):024001. PubMed ID: 29239856 [TBL] [Abstract][Full Text] [Related]
34. Characterisation of surface wettability based on nanoparticles. Gao N; Yan Y Nanoscale; 2012 Apr; 4(7):2202-18. PubMed ID: 22392411 [TBL] [Abstract][Full Text] [Related]
35. Biomimetic fluorine-free 3D alternating hydrophilic-superhydrophobic surfaces with different bump morphologies for efficient water harvesting. Peng Z; Guo Z Biomater Sci; 2022 Oct; 10(20):5831-5837. PubMed ID: 36124948 [TBL] [Abstract][Full Text] [Related]
36. Superhydrophobic multi-scale ZnO nanostructures fabricated by chemical vapor deposition method. Zhou M; Feng C; Wu C; Ma W; Cai L J Nanosci Nanotechnol; 2009 Jul; 9(7):4211-4. PubMed ID: 19916432 [TBL] [Abstract][Full Text] [Related]
37. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Liu M; Zheng Y; Zhai J; Jiang L Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162 [TBL] [Abstract][Full Text] [Related]
38. Fabrication of Biomimetic Fog-Collecting Superhydrophilic-Superhydrophobic Surface Micropatterns Using Femtosecond Lasers. Kostal E; Stroj S; Kasemann S; Matylitsky V; Domke M Langmuir; 2018 Mar; 34(9):2933-2941. PubMed ID: 29364677 [TBL] [Abstract][Full Text] [Related]
39. Improvement of the tunable wettability property of poly(3-alkylthiophene) films. Lin P; Yan F; Chan HL Langmuir; 2009 Jul; 25(13):7465-70. PubMed ID: 19413307 [TBL] [Abstract][Full Text] [Related]
40. Mimicking both petal and lotus effects on a single silicon substrate by tuning the wettability of nanostructured surfaces. Dawood MK; Zheng H; Liew TH; Leong KC; Foo YL; Rajagopalan R; Khan SA; Choi WK Langmuir; 2011 Apr; 27(7):4126-33. PubMed ID: 21355585 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]