These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28773270)

  • 1. The Role of Grain Size on Neutron Irradiation Response of Nanocrystalline Copper.
    Mohamed W; Miller B; Porter D; Murty K
    Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical properties for irradiated face-centred cubic nanocrystalline metals.
    Xiao XZ; Song DK; Chu HJ; Xue JM; Duan HL
    Proc Math Phys Eng Sci; 2015 May; 471(2177):20140832. PubMed ID: 27547091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastrong nanocrystalline steel with exceptional thermal stability and radiation tolerance.
    Du C; Jin S; Fang Y; Li J; Hu S; Yang T; Zhang Y; Huang J; Sha G; Wang Y; Shang Z; Zhang X; Sun B; Xin S; Shen T
    Nat Commun; 2018 Dec; 9(1):5389. PubMed ID: 30568181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implications of Microstructure in Helium-Implanted Nanocrystalline Metals.
    Nathaniel JE; El-Atwani O; Huang S; Marian J; Leff AC; Baldwin JK; Hattar K; Taheri ML
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies to Achieve High Strength and Ductility of Pulsed Electrodeposited Nanocrystalline Co-Cu by Tuning the Deposition Parameters.
    Pratama K; Motz C
    Molecules; 2020 Nov; 25(21):. PubMed ID: 33171606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal and Radiation Stability in Nanocrystalline Cu.
    Thomas M; Salvador H; Clark T; Lang E; Hattar K; Mathaudhu S
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiation tolerance of La-doped nanocrystalline steel under heavy-ion irradiation at different temperatures.
    Fang Y; Ge W; Yang T; Du C; Wang C; Liu S; Lu Y; Yan Z; Liu H; Liu F; Yang G; Shen T; Wang Y
    Nanotechnology; 2018 Dec; 29(49):494001. PubMed ID: 30215617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superplastic extensibility of nanocrystalline copper at room temperature.
    Lu L; Sui ML; Lu K
    Science; 2000 Feb; 287(5457):1463-6. PubMed ID: 10688789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing the strength of nanocrystalline steels by annealing: Is segregation necessary?
    Renk O; Hohenwarter A; Eder K; Kormout KS; Cairney JM; Pippan R
    Scr Mater; 2015 Jan; 95():27-30. PubMed ID: 25598694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The W alloying effect on thermal stability and hardening of nanostructured Cu-W alloyed thin films.
    Zhao JT; Zhang JY; Hou ZQ; Wu K; Feng XB; Liu G; Sun J
    Nanotechnology; 2018 May; 29(19):195705. PubMed ID: 29469813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermomechanical Properties of Neutron Irradiated Al
    Guillen DP; Toloczko MB; Prabhakaran R; Zhu Y; Lu Y; Wu Y
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual Beam In Situ Radiation Studies of Nanocrystalline Cu.
    Fan C; Shang Z; Niu T; Li J; Wang H; Zhang X
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31450669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grain size-dependent crystal plasticity constitutive model for polycrystal materials.
    Moghaddam MG; Achuthan A; Bednarcyk BA; Arnold SM; Pineda EJ
    Mater Sci Eng A Struct Mater; 2017 Aug; Volume 703():521-532. PubMed ID: 32690982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility.
    Wu X; Yang M; Yuan F; Wu G; Wei Y; Huang X; Zhu Y
    Proc Natl Acad Sci U S A; 2015 Nov; 112(47):14501-5. PubMed ID: 26554017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Irradiation-induced grain growth and defect evolution in nanocrystalline zirconia with doped grain boundaries.
    Dey S; Mardinly J; Wang Y; Valdez JA; Holesinger TG; Uberuaga BP; Ditto JJ; Drazin JW; Castro RH
    Phys Chem Chem Phys; 2016 Jun; 18(25):16921-9. PubMed ID: 27282392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grain boundary segregation and interdiffusion effects in nickel-copper alloys: an effective means to improve the thermal stability of nanocrystalline nickel.
    Pellicer E; Varea A; Sivaraman KM; Pané S; Suriñach S; Baró MD; Nogués J; Nelson BJ; Sort J
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2265-74. PubMed ID: 21667966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Grain Size on the Microstructure and Strain Hardening Behavior of Solution Heat-Treated Low-C High-Mn Steel.
    Opiela M; Fojt-Dymara G; Grajcar A; Borek W
    Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32218274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ TEM study of grain growth in nanocrystalline copper thin films.
    Simões S; Calinas R; Vieira MT; Vieira MF; Ferreira PJ
    Nanotechnology; 2010 Apr; 21(14):145701. PubMed ID: 20215662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Softening due to Grain Boundary Cavity Formation and its Competition with Hardening in Helium Implanted Nanocrystalline Tungsten.
    Cunningham WS; Gentile JM; El-Atwani O; Taylor CN; Efe M; Maloy SA; Trelewicz JR
    Sci Rep; 2018 Feb; 8(1):2897. PubMed ID: 29440652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomistic simulation study of tensile deformation in nanocrystalline and single-crystal Au.
    Wu CD; Tsai HW
    J Mol Model; 2017 Apr; 23(4):114. PubMed ID: 28289955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.