These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28773323)

  • 1. Post Processing and Biological Evaluation of the Titanium Scaffolds for Bone Tissue Engineering.
    Wysocki B; Idaszek J; Szlązak K; Strzelczyk K; Brynk T; Kurzydłowski KJ; Święszkowski W
    Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of chemical polishing of titanium scaffolds on their mechanical strength and in-vitro cell response.
    Wysocki B; Idaszek J; Buhagiar J; Szlązak K; Brynk T; Kurzydłowski KJ; Święszkowski W
    Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():428-439. PubMed ID: 30573267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering.
    Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K
    Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Influence of Selective Laser Melting (SLM) Process Parameters on In-Vitro Cell Response.
    Wysocki B; Idaszek J; Zdunek J; Rożniatowski K; Pisarek M; Yamamoto A; Święszkowski W
    Int J Mol Sci; 2018 May; 19(6):. PubMed ID: 29849015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical design of open-porous titanium scaffolds for Powder Bed Fusion using Laser Beam (PBF-LB).
    Cwieka K; Wysocki B; Skibinski J; Chmielewska A; Swieszkowski W
    J Mech Behav Biomed Mater; 2024 Mar; 151():106359. PubMed ID: 38181569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partially Melted Ti6Al4V Particles Increase Bacterial Adhesion and Inhibit Osteogenic Activity on 3D-printed Implants: An In Vitro Study.
    Xie K; Guo Y; Zhao S; Wang L; Wu J; Tan J; Yang Y; Wu W; Jiang W; Hao Y
    Clin Orthop Relat Res; 2019 Dec; 477(12):2772-2782. PubMed ID: 31764350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graded or random - Effect of pore distribution in 3D titanium scaffolds on corrosion performance and response of hMSCs.
    Idaszek J; Wysocki B; Ura-Bińczyk E; Dobkowska A; Nowak W; Yamamoto A; Sulka GD; Święszkowski W
    Biomater Adv; 2024 Oct; 163():213955. PubMed ID: 38986318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of 3D-printed Ti
    Wang H; Su K; Su L; Liang P; Ji P; Wang C
    J Mech Behav Biomed Mater; 2018 Dec; 88():488-496. PubMed ID: 30223212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficacy of bone defect therapy involving various surface treatments of titanium alloy implants: an in vivo and in vitro study.
    Wang B; Guo Y; Xu J; Zeng F; Ren T; Guo W
    Sci Rep; 2023 Nov; 13(1):20116. PubMed ID: 37978333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailored mechanical response and mass transport characteristic of selective laser melted porous metallic biomaterials for bone scaffolds.
    Zhang L; Song B; Yang L; Shi Y
    Acta Biomater; 2020 Aug; 112():298-315. PubMed ID: 32504689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants.
    Han C; Li Y; Wang Q; Wen S; Wei Q; Yan C; Hao L; Liu J; Shi Y
    J Mech Behav Biomed Mater; 2018 Apr; 80():119-127. PubMed ID: 29414467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth.
    Chen Z; Yan X; Yin S; Liu L; Liu X; Zhao G; Ma W; Qi W; Ren Z; Liao H; Liu M; Cai D; Fang H
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110289. PubMed ID: 31753386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis.
    Wang H; Su K; Su L; Liang P; Ji P; Wang C
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109908. PubMed ID: 31499974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: Experimental and computational analysis.
    Barui S; Chatterjee S; Mandal S; Kumar A; Basu B
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):812-823. PubMed ID: 27770959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials.
    Zhang XY; Fang G; Leeflang S; Zadpoor AA; Zhou J
    Acta Biomater; 2019 Jan; 84():437-452. PubMed ID: 30537537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteoconductivity of bioactive Ti-6Al-4V implants with lattice-shaped interconnected large pores fabricated by electron beam melting.
    Goto M; Matsumine A; Yamaguchi S; Takahashi H; Akeda K; Nakamura T; Asanuma K; Matsushita T; Kokubo T; Sudo A
    J Biomater Appl; 2021 Apr; 35(9):1153-1167. PubMed ID: 33106079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D porous Ti6Al4V-beta-tricalcium phosphate scaffolds directly fabricated by additive manufacturing.
    Li J; Yuan H; Chandrakar A; Moroni L; Habibovic P
    Acta Biomater; 2021 May; 126():496-510. PubMed ID: 33727193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique.
    Ryan GE; Pandit AS; Apatsidis DP
    Biomaterials; 2008 Sep; 29(27):3625-3635. PubMed ID: 18556060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications.
    Peng WM; Liu YF; Jiang XF; Dong XT; Jun J; Baur DA; Xu JJ; Pan H; Xu X
    J Zhejiang Univ Sci B; 2019 Aug.; 20(8):647-659. PubMed ID: 31273962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D inkjet printing of biomaterials with strength reliability and cytocompatibility: Quantitative process strategy for Ti-6Al-4V.
    Barui S; Panda AK; Naskar S; Kuppuraj R; Basu S; Basu B
    Biomaterials; 2019 Aug; 213():119212. PubMed ID: 31152931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.