These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 28773473)

  • 1. Improved Charge Separation in WO₃/CuWO₄ Composite Photoanodes for Photoelectrochemical Water Oxidation.
    Wang D; Bassi PS; Qi H; Zhao X; ; Wong LH; Xu R; Sritharan T; Chen Z
    Materials (Basel); 2016 May; 9(5):. PubMed ID: 28773473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Photoelectrochemical Water Oxidation Performance by Fluorine Incorporation in BiVO
    Rohloff M; Anke B; Kasian O; Zhang S; Lerch M; Scheu C; Fischer A
    ACS Appl Mater Interfaces; 2019 May; 11(18):16430-16442. PubMed ID: 31017393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into Charge Separation in WO
    Chae SY; Lee CS; Jung H; Joo OS; Min BK; Kim JH; Hwang YJ
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19780-19790. PubMed ID: 28530789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BiVO
    Baek JH; Kim BJ; Han GS; Hwang SW; Kim DR; Cho IS; Jung HS
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1479-1487. PubMed ID: 27989115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BiVO(4)/CuWO(4) heterojunction photoanodes for efficient solar driven water oxidation.
    Pilli SK; Deutsch TG; Furtak TE; Brown LD; Turner JA; Herring AM
    Phys Chem Chem Phys; 2013 Mar; 15(9):3273-8. PubMed ID: 23348367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper(II) tungstate nanoflake array films: sacrificial template synthesis, hydrogen treatment, and their application as photoanodes in solar water splitting.
    Hu D; Diao P; Xu D; Xia M; Gu Y; Wu Q; Li C; Yang S
    Nanoscale; 2016 Mar; 8(11):5892-901. PubMed ID: 26912373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructured WO₃/BiVO₄ heterojunction films for efficient photoelectrochemical water splitting.
    Su J; Guo L; Bao N; Grimes CA
    Nano Lett; 2011 May; 11(5):1928-33. PubMed ID: 21513345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel tungsten trioxide (WO3)/ITO porous nanocomposite for enhanced photo-catalytic water splitting.
    Ishihara H; Kannarpady GK; Khedir KR; Woo J; Trigwell S; Biris AS
    Phys Chem Chem Phys; 2011 Nov; 13(43):19553-60. PubMed ID: 21970978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ni(II)-doped CuWO
    Nomellini C; Polo A; Grigioni I; Marra G; Dozzi MV; Selli E
    Photochem Photobiol Sci; 2023 Dec; 22(12):2759-2768. PubMed ID: 37831332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved charge separation via Fe-doping of copper tungstate photoanodes.
    Bohra D; Smith WA
    Phys Chem Chem Phys; 2015 Apr; 17(15):9857-66. PubMed ID: 25776231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CuWO4 Nanoflake Array-Based Single-Junction and Heterojunction Photoanodes for Photoelectrochemical Water Oxidation.
    Ye W; Chen F; Zhao F; Han N; Li Y
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9211-7. PubMed ID: 27011376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thin film transfer for the fabrication of tantalum nitride photoelectrodes with controllable layered structures for water splitting.
    Wang C; Hisatomi T; Minegishi T; Nakabayashi M; Shibata N; Katayama M; Domen K
    Chem Sci; 2016 Sep; 7(9):5821-5826. PubMed ID: 30034721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial growth of the optimal BiVO
    Kumbhar VS; Lee H; Lee J; Lee K
    J Colloid Interface Sci; 2019 Dec; 557():478-487. PubMed ID: 31541917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesoporous CuFe
    Einert M; Waheed A; Moritz DC; Lauterbach S; Kundmann A; Daemi S; Schlaad H; Osterloh FE; Hofmann JP
    Chemistry; 2023 Apr; 29(24):e202300277. PubMed ID: 36823437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of CuFe
    Hussain S; Hussain S; Waleed A; Tavakoli MM; Wang Z; Yang S; Fan Z; Nadeem MA
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35315-35322. PubMed ID: 28027650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of WO3/Cu2O composite films and their photocatalytic activity.
    Wei S; Ma Y; Chen Y; Liu L; Liu Y; Shao Z
    J Hazard Mater; 2011 Oct; 194():243-9. PubMed ID: 21864975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional WO
    Wang Y; Tian W; Chen L; Cao F; Guo J; Li L
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40235-40243. PubMed ID: 29067799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new insight into vacancy modulation in lead-doped tungsten oxide nonarchitect for photoelectrochemical water splitting: An experimental and density functional theory approach.
    Ali RB; Lee YJ; Sial QA; Duy LT; Seo H
    J Colloid Interface Sci; 2024 Jul; 665():19-31. PubMed ID: 38513405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of SnWO
    Bozheyev F; Fengler S; Kollmann J; Abou-Ras D; Scharnagl N; Schieda M
    ACS Appl Mater Interfaces; 2024 Sep; 16(36):48565-48575. PubMed ID: 39225113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanostructured core-shell metal borides-oxides as highly efficient electrocatalysts for photoelectrochemical water oxidation.
    Lu C; Jothi PR; Thersleff T; Budnyak TM; Rokicinska A; Yubuta K; Dronskowski R; Kuśtrowski P; Fokwa BPT; Slabon A
    Nanoscale; 2020 Feb; 12(5):3121-3128. PubMed ID: 31965133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.