BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 28773511)

  • 1. Evaluation of Microstructure and Transport Properties of Deteriorated Cementitious Materials from Their X-ray Computed Tomography (CT) Images.
    Promentilla MAB; Cortez SM; Papel RAD; Tablada BM; Sugiyama T
    Materials (Basel); 2016 May; 9(5):. PubMed ID: 28773511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional diffusion of non-sorbing species in porous sandstone: computer simulation based on X-ray microtomography using synchrotron radiation.
    Nakashima Y; Nakano T; Nakamura K; Uesugi K; Tsuchiyama A; Ikeda S
    J Contam Hydrol; 2004 Oct; 74(1-4):253-64. PubMed ID: 15358495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructural Characterization of Fried Potato Disks Using X-Ray Micro Computed Tomography.
    Alam T; Takhar PS
    J Food Sci; 2016 Mar; 81(3):E651-64. PubMed ID: 26868763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pore space extraction and characterization of sack paper using μ-CT.
    Machado Charry E; Neumann M; Lahti J; Schennach R; Schmidt V; Zojer K
    J Microsc; 2018 Oct; 272(1):35-46. PubMed ID: 29984831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of sampling patterns for high-resolution compressed sensing MRI of porous materials: 'learning' from X-ray microcomputed tomography data.
    Karlsons K; DE Kort DW; Sederman AJ; Mantle MD; DE Jong H; Appel M; Gladden LF
    J Microsc; 2019 Nov; 276(2):63-81. PubMed ID: 31587277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative characterization of pore structure of several biochars with 3D imaging.
    Hyväluoma J; Kulju S; Hannula M; Wikberg H; Källi A; Rasa K
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):25648-25658. PubMed ID: 28342082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and properties of clinical coralline implants measured via 3D imaging and analysis.
    Knackstedt MA; Arns CH; Senden TJ; Gross K
    Biomaterials; 2006 May; 27(13):2776-86. PubMed ID: 16423388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative stereological analysis of the highly porous hydroxyapatite scaffolds using X-ray CM and SEM.
    Zygmuntowicz J; Zima A; Czechowska J; Szlazak K; Ślosarczyk A; Konopka K
    Biomed Mater Eng; 2017; 28(3):235-246. PubMed ID: 28527187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional pore space quantification of apple tissue using X-ray computed microtomography.
    Mendoza F; Verboven P; Mebatsion HK; Kerckhofs G; Wevers M; Nicolaï B
    Planta; 2007 Aug; 226(3):559-70. PubMed ID: 17361459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray Computed Microtomography technique applied for cementitious materials: A review.
    da Silva ÍB
    Micron; 2018 Apr; 107():1-8. PubMed ID: 29358098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lab-scale and pore-scale study of low-permeability soil diffusional tortuosity.
    Lekhov VA; Pozdniakov SP; Nešetřil K
    J Contam Hydrol; 2021 Oct; 242():103858. PubMed ID: 34298490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the challenges of greyscale-based quantifications using X-ray computed microtomography.
    Zhang Y; Mostaghimi P; Armstrong RT
    J Microsc; 2019 Aug; 275(2):82-96. PubMed ID: 31077363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study.
    Truscello S; Kerckhofs G; Van Bael S; Pyka G; Schrooten J; Van Oosterwyck H
    Acta Biomater; 2012 Apr; 8(4):1648-58. PubMed ID: 22210520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The pore structure and water absorption in Portland/slag blended hardened cement paste determined by synchrotron X-ray microtomography and neutron radiography.
    Vigor JE; Prentice DP; Xiao X; Bernal SA; Provis JL
    RSC Adv; 2024 Jan; 14(7):4389-4405. PubMed ID: 38304565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of geometric tortuosity for 3D digitally generated porous media considering the pore size distribution and the A-star algorithm.
    Ávila J; Pagalo J; Espinoza-Andaluz M
    Sci Rep; 2022 Nov; 12(1):19463. PubMed ID: 36376348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray microtomography characterization of porosity, permeability and reactive surface changes during dissolution.
    Gouze P; Luquot L
    J Contam Hydrol; 2011 Mar; 120-121():45-55. PubMed ID: 20797806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Porous Cementitious Materials Using Microscopic Image Processing and X-ray CT Analysis.
    Yoon J; Kim H; Sim SH; Pyo S
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32664625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Note on the use of different approaches to determine the pore sizes of tissue engineering scaffolds: what do we measure?
    Bartoš M; Suchý T; Foltán R
    Biomed Eng Online; 2018 Aug; 17(1):110. PubMed ID: 30119672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Imaging Resolution and Knudsen Effect on the Mass Transport of Shale Gas Assisted by Multi-length Scale X-Ray Computed Tomography.
    Iacoviello F; Lu X; Mitchell TM; Brett DJL; Shearing PR
    Sci Rep; 2019 Dec; 9(1):19465. PubMed ID: 31857642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of synchrotron X-ray computerized microtomography for the visualization of transport processes in low-porosity materials.
    Altman SJ; Peplinski WJ; Rivers ML
    J Contam Hydrol; 2005 Jul; 78(3):167-83. PubMed ID: 16019110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.