BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 28773520)

  • 1. Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash.
    Safiuddin M; Raman SN; Abdus Salam M; Jumaat MZ
    Materials (Basel); 2016 May; 9(5):. PubMed ID: 28773520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soft computing models to predict the compressive strength of GGBS/FA- geopolymer concrete.
    Ahmed HU; Mohammed AA; Mohammed A
    PLoS One; 2022; 17(5):e0265846. PubMed ID: 35613110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eco-friendly concrete incorporating palm oil fuel ash: Fresh and mechanical properties with machine learning prediction, and sustainability assessment.
    Hasan NMS; Sobuz MHR; Shaurdho NMN; Meraz MM; Datta SD; Aditto FS; Kabbo MKI; Miah MJ
    Heliyon; 2023 Nov; 9(11):e22296. PubMed ID: 38045200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid nonlinear regression model versus MARS, MEP, and ANN to evaluate the effect of the size and content of waste tire rubber on the compressive strength of concrete.
    Ismael Jaf DK; Abdalla A; Mohammed AS; Abdulrahman PI; Rawaz Kurda ; Mohammed AA
    Heliyon; 2024 Feb; 10(4):e25997. PubMed ID: 38384542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermo-mechanical properties and sustainability analysis of newly developed eco-friendly structural foamed concrete by reusing palm oil fuel ash and eggshell powder as supplementary cementitious materials.
    Jhatial AA; Goh WI; Mastoi AK; Rahman AF; Kamaruddin S
    Environ Sci Pollut Res Int; 2021 Aug; 28(29):38947-38968. PubMed ID: 33745050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental investigation and modelling of the mechanical properties of palm oil fuel ash concrete using Scheffe's method.
    Akeke GA; Inem PU; Alaneme GU; Nyah EE
    Sci Rep; 2023 Oct; 13(1):18583. PubMed ID: 37903794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of waste ash from palm oil industry in concrete.
    Tangchirapat W; Saeting T; Jaturapitakkul C; Kiattikomol K; Siripanichgorn A
    Waste Manag; 2007; 27(1):81-8. PubMed ID: 16497498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial Intelligence Approaches for Prediction of Compressive Strength of Geopolymer Concrete.
    Dao DV; Ly HB; Trinh SH; Le TT; Pham BT
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30934566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical Framework for Geopolymer Gels Construction: An Optimized LSTM Technique to Predict Compressive Strength of Fly Ash-Based Geopolymer Gels Concrete.
    Shi X; Chen S; Wang Q; Lu Y; Ren S; Huang J
    Gels; 2024 Feb; 10(2):. PubMed ID: 38391478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting the Compressive Strength of Concrete Containing Fly Ash and Rice Husk Ash Using ANN and GEP Models.
    Al-Hashem MN; Amin MN; Raheel M; Khan K; Alkadhim HA; Imran M; Ullah S; Iqbal M
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic Experimental Assessment of POFA Concrete Incorporating Waste Tire Rubber Aggregate.
    Mhaya AM; Baharom S; Baghban MH; Nehdi ML; Faridmehr I; Huseien GF; Algaifi HA; Ismail M
    Polymers (Basel); 2022 Jun; 14(11):. PubMed ID: 35683966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial neural network, machine learning modelling of compressive strength of recycled coarse aggregate based self-compacting concrete.
    Jagadesh P; Khan AH; Priya BS; Asheeka A; Zoubir Z; Magbool HM; Alam S; Bakather OY
    PLoS One; 2024; 19(5):e0303101. PubMed ID: 38739642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian Regularized Artificial Neural Network Model to Predict Strength Characteristics of Fly-Ash and Bottom-Ash Based Geopolymer Concrete.
    Aneja S; Sharma A; Gupta R; Yoo DY
    Materials (Basel); 2021 Apr; 14(7):. PubMed ID: 33915938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supervised Learning Methods for Modeling Concrete Compressive Strength Prediction at High Temperature.
    Ahmad M; Hu JL; Ahmad F; Tang XW; Amjad M; Iqbal MJ; Asim M; Farooq A
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33920988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soft computing techniques to predict the compressive strength of green self-compacting concrete incorporating recycled plastic aggregates and industrial waste ashes.
    Faraj RH; Mohammed AA; Omer KM; Ahmed HU
    Clean Technol Environ Policy; 2022; 24(7):2253-2281. PubMed ID: 35531082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of the Compressive Strength of Fly Ash Geopolymer Concrete by an Optimised Neural Network Model.
    Khalaf AA; Kopecskó K; Merta I
    Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Analytical Method for Mix Design and Performance Prediction of High Calcium Fly Ash Geopolymer Concrete.
    Gunasekara C; Atzarakis P; Lokuge W; Law DW; Setunge S
    Polymers (Basel); 2021 Mar; 13(6):. PubMed ID: 33804194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compressive Strength Estimation of Fly Ash/Slag Based Green Concrete by Deploying Artificial Intelligence Models.
    Khan K; Salami BA; Iqbal M; Amin MN; Ahmed F; Jalal FE
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An approach for predicting the compressive strength of cement-based materials exposed to sulfate attack.
    Chen H; Qian C; Liang C; Kang W
    PLoS One; 2018; 13(1):e0191370. PubMed ID: 29346451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of the Compressive Strength of Recycled Aggregate Concrete Based on Artificial Neural Network.
    Bu L; Du G; Hou Q
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.